
Lattice-based Post-Quantum Cryptography
Number Theoretic Transform

Bhumika Mittal
Department of Computer Science

Ashoka University

Abstract: The Number Theoretic Transform (NTT) is a crucial function in many post-quantum cryptographic schemes based on

lattices like dilithium and kyber. This presentation discusses the basic theory of NTT and some of its variants.
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Lattice Basics

• Lattices: For any m ∈ N, an m-dimensional lattice L is a discrete additive subgroup of

(Rm,+), where Rm is the m-dimensional Euclidean space.

• An Alternate Definition: Let L ⊆ Rm. Then, L is a lattice if and only if there exist k

linearly independent vectors b1, . . . , bk ∈ L such that

L =

{
k∑

i=1

cibi

∣∣∣∣∣ ci ∈ Z and b1, . . . , bk ∈ Rm

}

• The integer k is called the rank of the lattice. Clearly, k ≤ m. The sequence of vectors

b1, . . . , bk is called a lattice basis and it is conveniently represented as a matrix

B = [b1, . . . , bk ] ∈ Rm×k .

• Using the matrix notation, the above can be written in a more compact form as

L = {Bc | c ∈ Zk}, where Bc is the usual matrix-vector multiplication.

• When m = k, the lattice is called full-rank.

• An m-dimensional lattice L is called an integer lattice if L ⊆ Zm.
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Lattice Basics

• Lattice Determinant Let L = L(B) be a full-rank lattice. Define det(L) = | det(B)|.

• Minimum Distance

λ1 = min
x,y∈L
x ̸=y

∥x− y∥

= min
x∈L
x ̸=0

∥x∥

• Successive minima (1 ≤ i ≤ m)

λi = min{r | dim(spanR(B(r) ∩ L)) ≥ i}

• When L = Zm, we have λ1 = λ2 = . . . = λm = 1.

• Fact λ1 ≤ λ2 ≤ . . . ≤ λm

Bhumika Mittal Number Theoretic Transform 3 / 19



Learning With Errors (LWE)

• Sampling from LWEn,m,q,α

Sample {(ai , bi )}mi=1

LWEn,m,q,α←−−−−−−− Zn
q × Zq

s ← Zn
q

For i = 1 to m

ai ← Zn×1
q

ei ← Z, where σ = αq

bi = aTi s + ei (mod q)

Output {(ai , bi )}mi=1

• Another representation for

{(ai , bi )}mi=1 ≡ (A ∈ Zn×m
q , b ∈ Zm

q ),

where A =
[
a1 · · · am

]
and

b = AT s + e (mod q) where

e =
[
e1 · · · em

]T
.

• Decision-LWEn,m,q,α

Given {(ai , bi )}mi=1, decide between

{(ai , bi )}mi=1

LWEn,m,q,α←−−−−−−− Zn
q × Zq

{(ai , bi )}mi=1
$←− Zn

q × Zq

• Search-LWEn,m,q,α

Given {(ai , bi )}mi=1

LWEn,m,q,α←−−−−−−− Zn
q × Zq ,

determine s.

• Remark: There exists various algorithms that

solves Decison-LWE and the efficiency of these

algorithms depends upon the range of the

security parameter α
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Polynomial Multiplication

• Input
f (x) = a0 + a1x + · · ·+ an−1xn−1

g(x) = b0 + b1x + · · ·+ bn−1xn−1, ai , bi ∈ R, a ring.

Output f (x) × g(x) = c0 + c1x + · · · + c2n−2x
2n−2, where cj =

∑j
k=0 akbj−k , 0 ≤ j ≤ 2n − 1

• Define Rq =
Zq [x]

⟨xn−1⟩ , q is prime.

Input
f (x) = a0 + a1x + · · · + an−1x

n−1

g(x) = b0 + b1x + · · · + bn−1x
n−1, f , g ∈ Rq

Output f · g(modRq) where

f · g(modRq) = f × g(mod q, xn − 1) = c0 + c1x + · · · + cn−1x
n−1

• Define Rq =
Zq [x]

⟨xn+1⟩ , q is prime.

Input
f (x) = a0 + a1x + · · · + an−1x

n−1

g(x) = b0 + b1x + · · · + bn−1x
n−1, f , g ∈ Rq

Output f · g(modRq) where

f · g(modRq) = f × g(mod q, xn + 1) = c0 + c1x + · · · + cn−1x
n−1
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Scheme Ring q n

Kyber
Zq [x]

⟨xn+1⟩ 3329 256

Dilithium
Zq [x]

⟨xn+1⟩ 223 − 213 + 1 = 8380417 256

Table: Polynomial Multiplications in NIST PQC Finalists
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Number Theoretic Transform

• n-th Primitive Root Modulo q: An n-th primitive root modulo q is a ω ∈ Z∗
q such that the

order of ω (with respect to the group Z∗
q ) is n, i.e., ωn ≡ 1 (mod q) and for any m < n,

ωm ̸≡ 1 (mod q).

• Fact A prime q admits n-th primitive root of unity ⇔ q ≡ 1 (mod n).

Notation: ωn - for nth primitive root.

• NTTωn (f ) Let f (x) ∈ Zq [x]. Define

NTTωn (f ) = (f (1), f (ωn), . . . , f (ω
n−1
n ))) ∈ Zn

q

where f (ωn
i )s are evaluated modulo q.

• Lemma Let f , g ∈ Zq [x]

⟨xn−1⟩ and ωn be an nth primitive root modulo q. Then,

f · g (mod q, xn − 1) = (n−1) · NTT
ω−1
n

(NTTωn (f ) · NTTωn (g))

where NTTωn (f ) · NTTωn (g) = (f (1) · g(1), f (ωn) · g(ωn), . . . , f (ω
n−1
n )) · g(ωn−1

n )) and

(n−1) is computed modulo q.
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NTTw (f ) =


f (1)

f (ω)
...

f (ωn−1)

 =


a0 + a1 + · · ·+ an−1

...

a0 + a1ωn−1 + · · ·+ an−1(ωn−1)n−1



=


1 1 1 · · · 1

1 ω ω2 · · · ωn−1

...
...

... · · ·
...

1 ωn−1 (ωn−1)2 · · · (ωn−1)n−1




a0
a1
...

an−1


= V (ω) · c(f )

Fact Since V−1
ωn exists in Zq , and V−1

ωn = n−1 · V
ω−1
n

, therefore:

cof(f ) = V−1
ωn
· NTTωn (f )

= n−1 · V
ω−1
n
· NTTωn (f )

= V
ω−1
n
· n−1 · NTTωn (f )

= NTT
ω−1
n

(n−1 · NTTωn (f ))
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Example

For the following parameters:

q = 7

n = 3, n−1 = 5

ω = 2, ω−1 = 4

f (x) = 1 + 2x + x2

We get the following conversion using the direct method

c(f ) =

12
1

 NTT(f )−−−−−→

f (1)f (2)

f (4)

 =

 1 + 2 + 1 = 4 mod 7

1 + 4 + 4 = 9 mod 7

1 + 8 + 16 = 25 mod 7

 =

42
4

 NTT−−−→

5.4 = 20 =⇒ 6

5.2 = 10 =⇒ 3

5.4 = 20 =⇒ 6


This means, we have g(x) = 6 + 3x + 6x2

NTTω−1 (g) = (g(1), g(ω), g(ω2))

= (g(1), g(4), g(2))

= (1, 2, 1)
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Computing NTTωn(f ): Algorithm 1

Assume n = 2k

- Let f (x) = a0 + a1x + a2x2 + · · ·+ an−1xn−1.

- Write f (x) = fe(x2) + x · fo(x2), where
fe(x2) = a0 + a2x2 + a4x4 + · · ·+ an−2xn−2 = a0 + a2x2 + a4(x2)2 + · · ·+ an−1(x2)

n
2
−1

fo(x2) = a1 + a3x2 + a5x4 + · · ·+ an−1xn−2 = a1 + a3x2 + a5(x2)2 + · · ·+ an−1(x2)
n
2
−1

- NTTωn (f ) = (f (ωi
n))

n−1
i=0 . Therefore, for 1 ≤ i ≤ n,

f (ωi
n) = fe((ω

i
n)

2) + ωi
n · fo((ωi

n)
2)

= fe((ω2n)
i ) + ωi

n · fo((ω2n)
i )

= fe((ωn/2)
i ) + ωi

n · fo((ωn/2)
i )

where ωn/2 = ω2
n is n/2-th primitive root modulo q.

- Therefore, for 0 ≤ i ≤ n
2
− 1, f (ωi

n) = fe((ωn/2)
i ) + ωi

n · fo((ωn/2)
i ), and for

n
2
+ 1 ≤ i ≤ n − 1, write i = n

2
+ j , where 0 ≤ j ≤ n

2
− 1, and therefore

f (ωi
n) = f (ω

n
2
+j

n ) = fe((ωn/2)
n
2
+j ) + ω

n
2
+j

n · fo((ωn/2)
n
2
+j ) = fe((ωn/2)

j )− ωj
n · fo((ωn/2)

j )

- Running Time T (n) = 2T (n/2) + Θ(n) = Θ(n log n)
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Butterfly diagram

Example

Let n = 8, q = 17

6 4 7 8 3 5 2 0

9 9 9 8 3 9 14 16

1 0 0 13 0 8 6 11

1 1 13 4 8 9 0 12
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Multiplication in
Zq [x]
⟨xn+1⟩

• Consider Rq =
Zq [x]

⟨xn+1⟩ where n = 2k , k ∈ N, and q is a prime such that q ≡ 1 (mod 2n).

As q is prime, Zq is a field, and since q ≡ 1 (mod 2n), Z∗
q contains an element ω with

o(ω) = 2n (the 2nth primitive root of unity).

• Let H = ⟨ω⟩ ⊆ Z∗
q be the subgroup generated by ω.

• The total number of generators of H = φ(2n) = φ(2k+1) = 2k+1 − 2k = 2k = n. These

generators (primitive roots) are clearly the odd powers of ω, i.e., they are

ω, ω3, ω5, . . . , ω2n−1.

• Also, all elements of H are roots of the polynomial x2n − 1 over Zq . As

x2n − 1 = (xn − 1)× (xn + 1), for any generator ω0 of H, we have

((ω0)n − 1)× ((ω0)n + 1) = (ω0)2n − 1 = 0. This means, (ω0)n+1 = 0 ((ω0)n − 1 = 0

contradicts the primitiveness). Therefore, all generators of H are roots of the polynomial

xn + 1. Therefore, we have

xn + 1 =
∏

i=1,3,...,2n−1

(x − ωi )
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• This means (using the Chinese Remainder Theorem), Zq [x]/⟨xn + 1⟩ is isomorphic to
Zq [x]

⟨x−ω⟩ ×
Zq [x]

⟨x−ω3⟩ × . . .×
Zq [x]

⟨x−ω2n−1⟩ .

• The isomorphism is given by:

f (x) ∈ Zq [x]/⟨xn+1⟩ 7→ (f (ω), f (ω3), . . . , f (ω2n−1))

• Therefore, for any two f , g ∈ Rq we have

f · g (modRq) = I−1(I (f ) · I (g))

= I−1(DFTω2 (f0) · DFTω2 (g0))

= I−1(DFTω2 (f0 · g0))

= I−1(I (f · g))

= (1, ω−1, ω−2, . . . , ω−255) ·
(
1

n
· DFT(ω2)−1(I (f · g))

)
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NTT in Dilithium

• Ring: R =
Zq [x]

<xn+1>

• q is chosen such that there exists 2n-th root of unity (mod q)

• q = 223 − 213 + 1 = 8380417

• n = 256

• ψ = 1753
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The Zetas

There are some pre-computed values in the dilithium code, namely, zetas. For ψ = 1753 and

q = 8380417, we have the following:

Zq = {0, 1, · · · , 8380416}

= {−
8380416

2
, · · · , 0, · · · ,

8380416

2
}

We will define,

zeta[i ] = ψbr(i) × 232 mod q

If

zeta[i ] >
q − 1

2
, zeta[i ] = zeta[i ]− q

Remark: We are multiplying by 232 due to montgomery reduction which is used to carry out the multiplication efficiently and prevent overflowing.
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Why is NTT nice?

• Both NTT and INTT are linear transformations, based on which it can save INTTs in

Dilithium, Kyber, and other lattice-based schemes.

n∑
i=0

aibi =
n∑

i=0

INTT(NTT(ai ) ◦ NTT(bi ))

= INTT

(
n∑

i=0

NTT(ai ) ◦ NTT(bi )
)

• Consider c = INTT(NTT(a) ◦ NTT(b)), where a is random. Since the NTT transforms keep

the randomness of a random polynomial, i.e., â = NTT(a) is also random, one can directly

generate a random polynomial, and view it as random â already in the NTT domain, and

compute c = INTT(â ◦ NTT(b)), thus eliminating the need for the forward transform.

Remark: This is done in Dilithium.
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Thank you!
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