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Knowledge

I To quantify the knowledge inherent in a message m, it is sufficient
to quantify how much easier it becomes to compute some new
function given m.

I Suppose Alice sends 0n to Bob. Bob gains no new knowledge,
because Bob could have produced the message himself.

I Suppose instead, that Alice sends Bob the message consisting of
“the preimage of the preimage ... (n times) of 0 for a one-way
function”. That certainly would be new knowledge.
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Knowledge

I The amount of knowledge conveyed in a message can be quantified
by considering the running time and size of a Turing machine that
generates the message.

I A message that can be generated by constant-sized Turing machine
that runs in polynomial-time in n conveys no knowledge.

I For randomly selected messages: “Alice conveys zero knowledge to
Bob if Bob can sample from a distribution of messages that is
computationally indistinguishable from the distribution of messages
that Alice would send.”

I This is distinct from “information” and Shannon entropy. Messages
that convey zero information may actually contain knowledge.
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Example: Zero-Knowledge encryption

I A private-key encryption scheme (Gen,Enc,Dec) is a
Zero-Knowledge encryption scheme if there exists a p.p.t. simulator
algorithm S such that ∀ non uniform p.p.t. D, ∃ a negligible
function ε(n), such that ∀m ∈ {0, 1}n it holds that D distinguishes
the following distributions with probability at most ε(n):
I {k ← Gen(1n) : Enck(m)}
I {S(1n)}

I If the above distributions are identical then it is perfect Zero
Knowledge.

I A similar definition can be used for public-key encryption; D cannot
distinguish between:
I {pk , sk ← Gen(1n) : pk ,Encpk (m)}
I {pk , sk ← Gen(1n) : pk ,S(pk , 1

n)}
I (Gen,Enc,Dec) is secure if and only if it is Zero-Knowledge.
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Zero-Knowledge interactions

Suppose Alice (the prover) would like to convince Bob (the verifier) that
a particular string x is in a language L. Since Alice does not trust Bob,
Alice wants to perform this proof in such a way that Bob learns nothing
else except that x ∈ L. In particular, it should not be possible for Bob to
later prove that x ∈ L to someone else.

Examples:

I I know p and q, the prime factors of N.

I I am of drinking age.

I The two balls you are holding (blindfolded) are of different colours.
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Interactive protocols

I Interactive Turing Machine: read-only input, read-only auxiliary
input, read-only random source, read-only receiving channel,
write-only sending channel and finally an output.

I A protocol (A,B) is a pair of ITMs with common input (as of now)
sharing communication channels.

I Let MA = {m1
A,m

2
A, . . .}, MB = {m1

B ,m
2
B , . . .}, and let

x , r1, r2, z1, z2 ∈ {0, 1}∗. The pair ((x , r1, z1,MA), (x , r2, z2,MB)) is
an execution protocol if on common input x, with auxiliary input zi
and random input ri respectively, results in mi

A being the i th message
received by A and mi

B being the i th message received by B. We
denote this (execution/view) by A(x , z1)↔ B(x , z2) (or sometimes
simply as (A,B)).

I (MA,MB) is the transcript of the execution.

I outX ((A,B)),X ∈ {A,B} is the output of A or B.
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Interactive proofs

A pair of interactive machines (P,V ) is an interactive proof system for a
language L if V is a p.p.t. machine and the following properties hold.

I (Completeness) For every x ∈ L, there exists a witness string
y ∈ {0, 1}∗ such that for every auxiliary string z :

Pr [outV [P(x , y)↔ V (x , z)] = 1] = 1

I (Soundness) There exists some negligible function ε such that for
all x 6∈ L and for all prover algorithms P∗, and all auxiliary strings
z ∈ {0, 1}∗,

Pr [outV [P∗(x)↔ V (x , z)] = 0] = 1− ε(|x |)

(We may replace 1− ε(|x |) by some constant 1/2.)
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Interactive proofs and computational complexity

I It trivially holds that NP ⊂ IP.

I Surprisingly, there are languages that are not known to be in NP
that also have interactive proofs. Graph non-isomorphism is an
example. Isomorphic if ∃σ such that σ(G1) = G2.

I IP = PSPACE. (Shamir)
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Interactive proof for graph non-isomorphism

Completeness is obvious. Soundness follows from the fact that a cheating
prover succeeds by probability at most 2−n.
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Efficient provers

I An interactive proof system (P,V ) is said to have an efficient prover
with respect to the witness relation RL if P is p.p.t. and the
completeness condition holds for every y ∈ RL(x).

I The soundness condition still requires that not even an all powerful
prover strategy P∗ can cheat the verifier V . A more relaxed notion –
called an interactive argument considers only P∗’s that are n.u.
p.p.t.
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An interactive protocol for graph isomorphism

The protocol is also Zero-Knowledge. V does not learn about σ.
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Honest verifier Zero-Knowledge

I Let (P,V ) be an efficient interactive proof for the language L ∈ NP
with witness relation RL. (P,V ) is said to be Honest Verifier
Zero-Knowledge if there exists a p.p.t. simulator S such that for
every n.u. p.p.t. distinguisher D, there exists a negligible function
ε() such that for every x ∈ L, y ∈ RL(x), z ∈ {0, 1}∗, D
distinguishes the following distributions with probability at most
ε(n).

• {viewV [P(x , y)↔ V (x , z)]}
• {S(x , z)}

I Intuitively, the definition says whatever V “saw” in the interactive
proof could have been generated by V himself by simply running the
algorithm S(x , z).
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Zero-Knowledge

I Let (P,V ) be an efficient interactive proof for the language L ∈ NP
with witness relation RL. (P,V ) is said to be Zero-Knowledge if for
every p.p.t adversary V ∗, there exists an expected p.p.t. simulator S
such that for every n.u. p.p.t. distinguisher D, there exists a
negligible function ε() such that for every x ∈ L, y ∈ RL(x),
z ∈ {0, 1}∗, D distinguishes the following distributions with
probability at most ε(n).

• {viewV ∗ [P(x , y)↔ V ∗(x , z)]}
• {S(x , z)}

I Perfect Zero-Knowledge if the two distributions are identical.

I An alternate formalization more directly considers what V ∗ “can
do”, instead of what V ∗ “sees”. Just change viewV ∗ to outV ∗ .
However, completely equivalent.
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The interactive protocol for graph isomorphism is perfect
zero knowledge

I the expected running time of S is polynomial.

I In the execution of S(x , z), H is identically distributed to π(G0), and
Pr [b = b′] = 1/2.
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Every language in NP has a zero-knowledge proof

I Step 1 Show a ZK proof (P ′,V ′) (with efficient provers) for an
NP-Complete language (say Graph 3-colouring).

I Step 2 For a given language L ∈ NP, an instance x and a witness
y :

1. Both P and V use Cook’s reduction to x to an instance x ′ of Graph
3-colouring. They get the same x ′ since the reduction is
deterministic.

2. Ditto with y to obtain a witness y ′ for the instance x ′.
3. Use Step 1.
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ZKP of Graph 3-colouring

Given: A graph (V ,E ) and a colouring C of the vertices.

1. The prover picks a random permutation π over the colours {1, 2, 3}.
2. The prover colours the vertices with the permuted colours and

covers the colours.

3. The verifier is then asked to pick a random edge, the prover
uncovers the connected vertices and demonstrates that they are
differently coloured.

4. If the procedure (the 3 steps above) is repeated O(n|E |) times then
the soundness error will be 2−n.
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Commitments

Commit: Put a value v in a locked box and give away the box.

Reveal: At a later time unlock an reveal v .

I A polynomial-time machine Com is called a commitment scheme it
there exists some polynomial l() such that the following two
properties hold:

1. Binding: For all n ∈ N and all v0, v1 ∈ {0, 1}n, r0, r1 ∈ {0, 1}l(n), it
holds that Com(v0, r0) 6= Com(v1, r1).

2. Hiding: For every n.u. p.p.t. distinguisher D, there exists a
negligible function ε() such that for every n ∈ N, v0, v1 ∈ {0, 1}n , D
distinguishes the following distributions with probability at most ε(n).

• {r ← {0, 1}l(n) : Com(v0, r)}
• {r ← {0, 1}l(n) : Com(v1, r)}

I If one-way permutations exist, then commitment schemes exist.
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Pedersen commitment

Setup: 1. Receiver chooses two large primes p (typically 1024
bits) and q (typically 160 bits) such that q|p − 1.
Receiver also chooses g which has order q

2. Receiver chooses a secret a ∈ Zq. Let h = g a mod p
3. 〈p, q, g , h〉 are public parameters. a is a secret

parameter
4. We have gq = 1 mod p. Also,
〈g〉 = {g , g2, g3, . . . , gq = 1}

Commit: To commit x ∈ Zq, sender chooses r ∈ Zq, and sends
c = g xhr mod p

Open: To open sender reveals x and r , receiver verifies

c
?
= g xhr mod p

Subhashis Banerjee, Subodh Sharma Interactive and Zero-Knowledge proofs



Pedersen commitment

I Unconditionally hiding

1. Given c, every x is equally likely
2. Given x , r and any x ′, there exist r ′ such that g xhr = g x′hr′ . In fact

r ′ = (x − x ′)a−1 + r mod q

I Computationally binding

1. Suppose sender cheats by opening another x ′ 6= x . That is sender
finds r ′ such that g xhr = g x′hr′ .

2. Then sender can compute logg h = (x − x ′) · (r − r ′)−1. Assuming
Discrete Log is hard, this is computationally hard for the sender.
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ZKP of Pedersen commitment

I Public commitment c = g xhr mod p

I Private knowledge x , r

I Protocol:

1. P picks random y , s ∈ Zq, sends d = g yhs mod p
2. V sends a random challenge e ∈ Zq

3. P sends u = y + ex , v = s + er mod q
4. V accepts if guhv = dce mod p

I Soundness and completeness?
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Applications of Zero Knowledge: Proof of Knowledge

I Login to a server with a password.

I Login to a server with a secret key:
I User sends ”login id”
I Server sends σ = (“Server name”, r).
I User signs σ with secret key.
I Server verifies with user’s public key.

I User simply proves in Zero-Knowledge that it knows the key S
corresponding to V .

Subhashis Banerjee, Subodh Sharma Interactive and Zero-Knowledge proofs


