Interactive and Zero-Knowledge proofs

Subhashis Banerjee, Subodh Sharma

Department of Computer Science and Engineering
IIT Delhi

November 6, 2020

Knowledge

- ▶ To quantify the knowledge inherent in a message *m*, it is sufficient to quantify how much easier it becomes to compute some new function given *m*.
- ► Suppose Alice sends 0ⁿ to Bob. Bob gains no new knowledge, because Bob could have produced the message himself.
- ▶ Suppose instead, that Alice sends Bob the message consisting of "the preimage of the preimage ... (*n* times) of 0 for a one-way function". That certainly would be new knowledge.

Knowledge

- ▶ The amount of knowledge conveyed in a message can be quantified by considering the running time and size of a Turing machine that generates the message.
- ▶ A message that can be generated by constant-sized Turing machine that runs in polynomial-time in *n* conveys no knowledge.
- ▶ For randomly selected messages: "Alice conveys zero knowledge to Bob if Bob can sample from a distribution of messages that is computationally indistinguishable from the distribution of messages that Alice would send."
- ► This is distinct from "information" and *Shannon entropy*. Messages that convey zero information may actually contain knowledge.

Example: Zero-Knowledge encryption

A private-key encryption scheme (Gen, Enc, Dec) is a Zero-Knowledge encryption scheme if there exists a p.p.t. simulator algorithm $\mathcal S$ such that \forall non uniform p.p.t. $\mathcal D$, \exists a negligible function $\epsilon(n)$, such that $\forall m \in \{0,1\}^n$ it holds that $\mathcal D$ distinguishes the following distributions with probability at most $\epsilon(n)$:

- ▶ If the above distributions are identical then it is *perfect Zero Knowledge*.
- ightharpoonup A similar definition can be used for public-key encryption; $\mathcal D$ cannot distinguish between:

```
 \{p_k, s_k \leftarrow \operatorname{Gen}(1^n) : p_k, \operatorname{Enc}_{p_k}(m)\} 
 \{p_k, s_k \leftarrow \operatorname{Gen}(1^n) : p_k, \mathcal{S}(p_k, 1^n)\}
```

▶ (Gen, Enc, Dec) is secure *if and only if* it is Zero-Knowledge.

Zero-Knowledge interactions

Suppose Alice (the prover) would like to convince Bob (the verifier) that a particular string x is in a language L. Since Alice does not trust Bob, Alice wants to perform this proof in such a way that Bob learns nothing else except that $x \in L$. In particular, it should not be possible for Bob to later prove that $x \in L$ to someone else.

Examples:

- ightharpoonup I know p and q, the prime factors of N.
- ▶ I am of drinking age.
- ▶ The two balls you are holding (blindfolded) are of different colours.

Interactive protocols

- Interactive Turing Machine: read-only input, read-only auxiliary input, read-only random source, read-only receiving channel, write-only sending channel and finally an output.
- ▶ A protocol (A, B) is a pair of ITMs with common input (as of now) sharing communication channels.
- Let $M_A = \{m_A^1, m_A^2, \ldots\}$, $M_B = \{m_B^1, m_B^2, \ldots\}$, and let $x, r_1, r_2, z_1, z_2 \in \{0, 1\}^*$. The pair $((x, r_1, z_1, M_A), (x, r_2, z_2, M_B))$ is an *execution protocol* if on common input x, with auxiliary input z_i and random input r_i respectively, results in m_A^i being the i^{th} message received by A and m_B^i being the i^{th} message received by B. We denote this (execution/view) by $A(x, z_1) \leftrightarrow B(x, z_2)$ (or sometimes simply as (A, B)).
- \blacktriangleright (M_A , M_B) is the *transcript* of the execution.
- $\operatorname{out}_X((A,B)), X \in \{A,B\}$ is the output of A or B.

Interactive proofs

A pair of interactive machines (P, V) is an interactive proof system for a language L if V is a p.p.t. machine and the following properties hold.

▶ (Completeness) For every $x \in L$, there exists a witness string $y \in \{0,1\}^*$ such that for every auxiliary string z:

$$\Pr\left[\mathsf{out}_V\left[P(x,y)\leftrightarrow V(x,z)\right]=1\right]=1$$

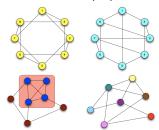
▶ (Soundness) There exists some negligible function ϵ such that for all $x \notin L$ and for all prover algorithms P^* , and all auxiliary strings $z \in \{0,1\}^*$,

$$\Pr\left[\mathsf{out}_V\left[P^*(x)\leftrightarrow V(x,z)\right]=0\right]=1-\epsilon(|x|)$$

(We may replace $1 - \epsilon(|x|)$ by some constant 1/2.)

Interactive proofs and computational complexity

- ▶ It trivially holds that $NP \subset IP$.
- Surprisingly, there are languages that are not known to be in **NP** that also have interactive proofs. *Graph non-isomorphism is an* example. Isomorphic if $\exists \sigma$ such that $\sigma(G_1) = G_2$.



► IP = PSPACE. (Shamir)

Interactive proof for graph non-isomorphism

protocol 118.3: Protocol for Graph Non-Isomorphism	
Input:	$x = (G_0, G_1)$ where $ G_i = n$
$V \stackrel{H}{\longrightarrow} P$	The verifier, $V(x)$, chooses a random bit $b \in \{0,1\}$, chooses a random permutation $\sigma \in S_n$, computes $H \leftarrow \sigma(G_b)$, and finally sends H to the prover.
$V \stackrel{b'}{\longleftarrow} P$	The prover computes a b' such that H and $G_{b'}$ are isomorphic and sends b' to the verifier.
V(x,H,b,b')	The verifier accepts and outputs 1 if $b' = b$ and 0 otherwise. Repeat the procedure $ G_1 $ times.

Completeness is obvious. Soundness follows from the fact that a cheating prover succeeds by probability at most 2^{-n} .

Efficient provers

- An interactive proof system (P, V) is said to have an *efficient prover* with respect to the witness relation R_L if P is p.p.t. and the completeness condition holds for every $y \in R_L(x)$.
- ► The soundness condition still requires that not even an all powerful prover strategy P* can cheat the verifier V. A more relaxed notion – called an interactive argument considers only P*'s that are n.u. p.p.t.

An interactive protocol for graph isomorphism

PROTOCOL 120.6: PROTOCOL FOR GRAPH ISOMORPHISM	
Input:	$x = (G_0, G_1)$ where $ G_i = n$
P's witness :	σ such that $\sigma(G_0) = G_1$
$V \xleftarrow{H} P$	The prover chooses a random permutation π , computes $H \leftarrow \pi(G_0)$ and sends H .
$V \stackrel{b}{\longrightarrow} P$	The verifier picks a random bit b and sends it.
$V \stackrel{\gamma}{\longleftarrow} P$	If $b=0$, the prover sends π . Otherwise, the prover sends $\gamma=\pi\cdot\sigma^{-1}$.
V	The verifier outputs 1 if and only if $\gamma(G_b) = H$.
<i>P,V</i>	Repeat the procedure $ G_1 $ times.

The protocol is also Zero-Knowledge. V does not learn about σ .

Honest verifier Zero-Knowledge

Let (P,V) be an efficient interactive proof for the language $L \in \mathbf{NP}$ with witness relation R_L . (P,V) is said to be *Honest Verifier Zero-Knowledge* if there exists a p.p.t. simulator $\mathcal S$ such that for every n.u. p.p.t. distinguisher $\mathcal D$, there exists a negligible function $\epsilon()$ such that for every $x \in L$, $y \in R_L(x)$, $z \in \{0,1\}^*$, $\mathcal D$ distinguishes the following distributions with probability at most $\epsilon(n)$.

•
$$\{\text{view}_V [P(x,y) \leftrightarrow V(x,z)]\}$$

• $\{S(x,z)\}$

Intuitively, the definition says whatever V "saw" in the interactive proof could have been generated by V himself by simply running the algorithm S(x,z).

Zero-Knowledge

Let (P,V) be an efficient interactive proof for the language $L \in \mathbf{NP}$ with witness relation R_L . (P,V) is said to be Zero-Knowledge if for every p.p.t adversary V^* , there exists an expected p.p.t. simulator $\mathcal S$ such that for every n.u. p.p.t. distinguisher $\mathcal D$, there exists a negligible function $\epsilon()$ such that for every $x \in L$, $y \in R_L(x)$, $z \in \{0,1\}^*$, $\mathcal D$ distinguishes the following distributions with probability at most $\epsilon(n)$.

• {view_{V*} [
$$P(x, y) \leftrightarrow V^*(x, z)$$
]}
• { $S(x, z)$ }

- ▶ Perfect Zero-Knowledge if the two distributions are identical.
- An alternate formalization more directly considers what V^* "can do", instead of what V^* "sees". Just change $\operatorname{view}_{V^*}$ to out_{V^*} . However, completely equivalent.

The interactive protocol for graph isomorphism is *perfect* zero knowledge

123.4: Simulator for Graph Isomorphism

- 1. Randomly pick $b' \leftarrow \{0,1\}, \pi \leftarrow S_n$
- 2. Compute $H \leftarrow \pi(G_{b'})$.
- Emulate the execution of V*(x,z) by feeding it H and truly random bits as its random coins; let b denote the response of V*.
- 4. If b = b' then output the view of V^* —i.e., the messages H, π , and the random coins it was feed. Otherwise, restart the emulation of V^* and repeat the procedure.
- \blacktriangleright the expected running time of \mathcal{S} is polynomial.
- ▶ In the execution of S(x,z), H is identically distributed to $\pi(G_0)$, and $\Pr[b=b']=1/2$.

Every language in NP has a zero-knowledge proof

- ▶ **Step 1** Show a ZK proof (P', V') (with efficient provers) for an **NP**-Complete language (say *Graph 3-colouring*).
- ▶ **Step 2** For a given language $L \in NP$, an instance x and a witness y:
 - Both P and V use Cook's reduction to x to an instance x' of Graph 3-colouring. They get the same x' since the reduction is deterministic.
 - 2. Ditto with y to obtain a witness y' for the instance x'.
 - 3. Use Step 1.

ZKP of Graph 3-colouring

Given: A graph (V, E) and a colouring C of the vertices.

- 1. The prover picks a random permutation π over the colours $\{1,2,3\}$.
- The prover colours the vertices with the permuted colours and covers the colours.
- The verifier is then asked to pick a random edge, the prover uncovers the connected vertices and demonstrates that they are differently coloured.
- 4. If the procedure (the 3 steps above) is repeated O(n|E|) times then the soundness error will be 2^{-n} .

Commitments

Commit: Put a value v in a locked box and give away the box.

Reveal: At a later time unlock an reveal v.

- ▶ A polynomial-time machine Com is called a *commitment scheme* it there exists some polynomial *I*() such that the following two properties hold:
 - 1. **Binding:** For all $n \in \mathbb{N}$ and all $v_0, v_1 \in \{0, 1\}^n$, $r_0, r_1 \in \{0, 1\}^{l(n)}$, it holds that $Com(v_0, r_0) \neq Com(v_1, r_1)$.
 - 2. **Hiding:** For every n.u. p.p.t. distinguisher \mathcal{D} , there exists a negligible function $\epsilon()$ such that for every $n \in \mathbb{N}$, $v_0, v_1 \in \{0,1\}^n$, \mathcal{D} distinguishes the following distributions with probability at most $\epsilon(n)$.
 - $\{r \leftarrow \{0,1\}^{l(n)} : \mathsf{Com}(v_0,r)\}$
 - $\{r \leftarrow \{0,1\}^{l(n)} : \mathsf{Com}(v_1,r)\}$
- ▶ If one-way permutations exist, then commitment schemes exist.

Pedersen commitment

Setup: 1. Receiver chooses two large primes p (typically 1024 bits) and q (typically 160 bits) such that q|p-1. Receiver also chooses g which has order q

- 2. Receiver chooses a secret $a \in \mathbb{Z}_q$. Let $h = g^a \mod p$
- 3. $\langle p, q, g, h \rangle$ are public parameters. a is a secret parameter
- 4. We have $g^q = 1 \mod p$. Also, $\langle g \rangle = \{g, g^2, g^3, \dots, g^q = 1\}$

Commit: To commit $x \in \mathbb{Z}_q$, sender chooses $r \in \mathbb{Z}_q$, and sends $c = g^x h^r \mod p$

Open: To open sender reveals x and r, receiver verifies $c \stackrel{?}{=} g^x h^r \mod p$

Pedersen commitment

- ► Unconditionally hiding
 - 1. Given c, every x is equally likely
 - 2. Given x, r and any x', there exist r' such that $g^x h^r = g^{x'} h^{r'}$. In fact $r' = (x x')a^{-1} + r \mod q$
- Computationally binding
 - 1. Suppose sender cheats by opening another $x' \neq x$. That is sender finds r' such that $g^x h' = g^{x'} h^{r'}$.
 - 2. Then sender can compute $\log_g h = (x x') \cdot (r r')^{-1}$. Assuming Discrete Log is hard, this is computationally hard for the sender.

ZKP of Pedersen commitment

- Public commitment $c = g^x h^r \mod p$
- ► Private knowledge *x*, *r*
- ► Protocol:
 - 1. P picks random $y, s \in \mathbb{Z}_q$, sends $d = g^y h^s \mod p$
 - 2. V sends a random challenge $e \in \mathbb{Z}_q$
 - 3. P sends u = y + ex, $v = s + er \mod q$
 - 4. V accepts if $g^u h^v = dc^e \mod p$
- Soundness and completeness?

Applications of Zero Knowledge: Proof of Knowledge

- ▶ Login to a server with a password.
- Login to a server with a secret key:
 - ► User sends "login id"
 - ▶ Server sends $\sigma = ($ "Server name", r).
 - User signs σ with secret key.
 - Server verifies with user's public key.
- User simply proves in Zero-Knowledge that it knows the key S corresponding to V.

