Interactive and Zero-Knowledge proofs

Subhashis Banerjee, Subodh Sharma

Department of Computer Science and Engineering
IIT Delhi

November 6, 2020

Subhashis Banerjee, Subodh Sharma

Knowledge

» To quantify the knowledge inherent in a message m, it is sufficient
to quantify how much easier it becomes to compute some new
function given m.

» Suppose Alice sends 0" to Bob. Bob gains no new knowledge,
because Bob could have produced the message himself.

» Suppose instead, that Alice sends Bob the message consisting of
“the preimage of the preimage ... (n times) of 0 for a one-way
function”. That certainly would be new knowledge.

Subhashis Banerjee, Subodh Sharma

Knowledge

» The amount of knowledge conveyed in a message can be quantified
by considering the running time and size of a Turing machine that
generates the message.

» A message that can be generated by constant-sized Turing machine
that runs in polynomial-time in n conveys no knowledge.

» For randomly selected messages: “Alice conveys zero knowledge to
Bob if Bob can sample from a distribution of messages that is
computationally indistinguishable from the distribution of messages
that Alice would send.”

» This is distinct from “information” and Shannon entropy. Messages
that convey zero information may actually contain knowledge.

Subhashis Banerjee, Subodh Sharma

Example: Zero-Knowledge encryption

> A private-key encryption scheme (Gen, Enc, Dec) is a
Zero-Knowledge encryption scheme if there exists a p.p.t. simulator
algorithm S such that V non uniform p.p.t. D, 3 a negligible
function €(n), such that Vm € {0,1}" it holds that D distinguishes
the following distributions with probability at most ¢(n):

» {k < Gen(1") : Enck(m)}
> {S(1")}

» If the above distributions are identical then it is perfect Zero

Knowledge.

» A similar definition can be used for public-key encryption; D cannot
distinguish between:
> {px, sk + Gen(1") : pi, Encp, (m)}
> {pi, s < Gen(1") : pi, S(pi, 17)}

» (Gen, Enc, Dec) is secure if and only if it is Zero-Knowledge.

Subhashis Banerjee, Subodh Sharma

Zero-Knowledge interactions

Suppose Alice (the prover) would like to convince Bob (the verifier) that
a particular string x is in a language L. Since Alice does not trust Bob,
Alice wants to perform this proof in such a way that Bob learns nothing
else except that x € L. In particular, it should not be possible for Bob to
later prove that x € L to someone else.

Examples:
» | know p and g, the prime factors of N.
» | am of drinking age.
» The two balls you are holding (blindfolded) are of different colours.

Subhashis Banerjee, Subodh Sharma

Interactive protocols

» Interactive Turing Machine: read-only input, read-only auxiliary
input, read-only random source, read-only receiving channel,
write-only sending channel and finally an output.

> A protocol (A, B) is a pair of ITMs with common input (as of now)
sharing communication channels.

> Let Mg={m},m3,...}, Mg = {mk,m3,...}, and let
X, n,r, 21,2 € {0,1}*. The pair ((x, 1, z1, Ma), (x, 12, 22, Mg)) is
an execution protocol if on common input x, with auxiliary input z;
and random input r; respectively, results in m/; being the i*" message
received by A and mj being the i message received by B. We
denote this (execution/view) by A(x, z1) <> B(x, z2) (or sometimes
simply as (A, B)).

» (Ma, Mg) is the transcript of the execution.

> outx((A, B)), X € {A, B} is the output of A or B.

Subhashis Banerjee, Subodh Sharma

Interactive proofs

A pair of interactive machines (P, V) is an interactive proof system for a
language L if V is a p.p.t. machine and the following properties hold.

> (Completeness) For every x € L, there exists a witness string
y € {0,1}* such that for every auxiliary string z:

Prlouty [P(x,y) + V(x,2)]=1] =1

> (Soundness) There exists some negligible function e such that for
all x € L and for all prover algorithms P*, and all auxiliary strings
z €{0,1}%,

Prlouty [P*(x) <> V(x,2)] =0] =1 —¢(|x])

(We may replace 1 — €(|x|) by some constant 1/2.)

Subhashis Banerjee, Subodh Sharma

Interactive proofs and computational complexity

» |t trivially holds that NP C IP.

» Surprisingly, there are languages that are not known to be in NP
that also have interactive proofs. Graph non-isomorphism is an
example. Isomorphic if 3o such that o(Gy) = Go.

> IP = PSPACE. (Shamir)

Subhashis Banerjee, Subodh Sharma

Interactive proof for graph non-isomorphism

PROTOCOL 118.3: PROTOCOL FOR GRAPH NON-ISOMORPHISM
Input: x = (Go, G1) where |G;| =n
vip The verifier, V(x), chooses a random bit
b € {0,1}, chooses a random permutation
o € Sy, computes H + 0(Gy), and finally
sends H to the prover.

V+«—P The prover computes a b’ such that H and
Gy are isomorphic and sends ' to the ver-
ifier.

V(x,H,b,V') The verifier accepts and outputs 1if o’ = b
and 0 otherwise.

Repeat the procedure |G| times.

Completeness is obvious. Soundness follows from the fact that a cheating
prover succeeds by probability at most 27",

Subhashis Banerjee, Subodh Sharma

Efficient provers

» An interactive proof system (P, V) is said to have an efficient prover
with respect to the witness relation Ry if P is p.p.t. and the
completeness condition holds for every y € R;(x).

» The soundness condition still requires that not even an all powerful
prover strategy P* can cheat the verifier V. A more relaxed notion —
called an interactive argument considers only P*'s that are n.u.
p.p.t.

Subhashis Banerjee, Subodh Sharma

An interactive protocol for graph isomorphism

PROTOCOL 120.6: PROTOCOL FOR GRAPH [SOMORPHISM

Input: x = (Go, G1) where |G;| =n

P’s witness: ¢ such that 0(Gy) = Gy

vl p The prover chooses a random permutation
7, computes H < 7(Gyp) and sends H.

v p The verifier picks a random bit b and sends
it.

v p If b = 0, the prover sends 7t. Otherwise,
the prover sends y = - 01,

1% The verifier outputs 1 if and only if
7(Gy) = H.

% Repeat the procedure |G| times.

The protocol is also Zero-Knowledge. V' does not learn about o.

Subhashis Banerjee, Subodh Sharma

Honest verifier Zero-Knowledge

> Let (P, V) be an efficient interactive proof for the language L € NP
with witness relation R;. (P, V) is said to be Honest Verifier
Zero-Knowledge if there exists a p.p.t. simulator S such that for
every n.u. p.p.t. distinguisher D, there exists a negligible function
€() such that for every x € L, y € Ri(x), z € {0,1}*, D
distinguishes the following distributions with probability at most

e(n).
° {viewv [P(X,_}/) e V(X7 Z)]}
° {S(x, 2)}

> Intuitively, the definition says whatever V' “saw” in the interactive
proof could have been generated by V' himself by simply running the
algorithm S(x, z).

Subhashis Banerjee, Subodh Sharma

Zero-Knowledge

> Let (P, V) be an efficient interactive proof for the language L € NP
with witness relation R;. (P, V) is said to be Zero-Knowledge if for
every p.p.t adversary V*, there exists an expected p.p.t. simulator &
such that for every n.u. p.p.t. distinguisher D, there exists a
negligible function €() such that for every x € L, y € R.(x),
z € {0,1}*, D distinguishes the following distributions with
probability at most €(n).

° {VieW\/* [P(X7)/) — V*(Xv Z)]}
. {S(x,2)}

» Perfect Zero-Knowledge if the two distributions are identical.

» An alternate formalization more directly considers what V* “can
do", instead of what V* “sees”. Just change viewy« to outy .
However, completely equivalent.

Subhashis Banerjee, Subodh Sharma

The interactive protocol for graph isomorphism is perfect

zero knowledge

123.4: SIMULATOR FOR GRAPH ISOMORPHISM

1. Randomly pick b’ < {0,1}, 7w + S,

2. Compute H < 71(Gy).

3. Emulate the execution of V*(x,z) by feeding it H and truly
random bits as its random coins; let b denote the response
of V*.

4. If b = V' then output the view of V*—i.e., the messages
H, 7t, and the random coins it was feed. Otherwise, restart
the emulation of V* and repeat the procedure.

» the expected running time of S is polynomial.

> In the execution of S(x, z), H is identically distributed to 7(Gp), and
Prib=b]=1/2.

Subhashis Banerjee, Subodh Sharma

Every language in NP has a zero-knowledge proof

» Step 1 Show a ZK proof (P’, V') (with efficient provers) for an
NP-Complete language (say Graph 3-colouring).

> Step 2 For a given language L € NP, an instance x and a witness
y:

1. Both P and V use Cook’s reduction to x to an instance x’ of Graph
3-colouring. They get the same x’ since the reduction is
deterministic.

2. Ditto with y to obtain a witness y’ for the instance x’.

3. Use Step 1.

Subhashis Banerjee, Subodh Sharma

ZKP of Graph 3-colouring

Given: A graph (V, E) and a colouring C of the vertices.

aka
) - A 2.0

1. The prover picks a random permutation 7 over the colours {1,2,3}.

2. The prover colours the vertices with the permuted colours and
covers the colours.

3. The verifier is then asked to pick a random edge, the prover
uncovers the connected vertices and demonstrates that they are
differently coloured.

4. If the procedure (the 3 steps above) is repeated O(n|E|) times then
the soundness error will be 27",

Subhashis Banerjee, Subodh Sharma

Commitments

Commit: Put a value v in a locked box and give away the box.

Reveal: At a later time unlock an reveal v.

» A polynomial-time machine Com is called a commitment scheme it
there exists some polynomial /() such that the following two
properties hold:

1. Binding: For all n € N and all vo,v1 € {0,1}", ro, . € {0,1}/(" it
holds that Com(vp, ro) # Com(vi, r1).

2. Hiding: For every n.u. p.p.t. distinguisher D, there exists a
negligible function €() such that for every n € N, v, vy € {0,1}" , D
distinguishes the following distributions with probability at most €(n).

o {r«{0,1}'™ : Com(wo, r)}
o {r«{0,1}'™ : Com(wvi,r)}

» If one-way permutations exist, then commitment schemes exist.

Subhashis Banerjee, Subodh Sharma

Pedersen commitment

Setup: 1. Receiver chooses two large primes p (typically 1024
bits) and g (typically 160 bits) such that g|p — 1.
Receiver also chooses g which has order g
2. Receiver chooses a secret a € Zg. Let h= g% mod p
3. {p,q, g, h) are public parameters. a is a secret
parameter
4. We have g9 =1 mod p. Also,
(g)=1{g.6%¢%....89=1}
Commit: To commit x € Zg, sender chooses r € Zg, and sends
c=g"h" mod p
Open: To open sender reveals x and r, receiver verifies

ct g*h" mod p

Subhashis Banerjee, Subodh Sharma

Pedersen commitment

» Unconditionally hiding

1. Given c, every x is equally likely
2. Given x, r and any x’, there exist r’ such that g*h" = gX/ A, In fact
r'=(x—=x")a"' +r mod q
» Computationally binding
1. Suppose sender cheats by openlng another x’ # x. That is sender
finds r’ such that g*h" = g* h
2. Then sender can compute log, h = (x — x') - (r — r')~*. Assuming
Discrete Log is hard, this is computationally hard for the sender.

Subhashis Banerjee, Subodh Sharma

/ZKP of Pedersen commitment

» Public commitment ¢ = g*h” mod p
» Private knowledge x, r
» Protocol:

1. P picks random y,s € Zq, sends d = g”h* mod p
2. V sends a random challenge e € Z,

3. Psends u=y+ex, v=s+er mod q

4. V accepts if g"h’ = dc® mod p

» Soundness and completeness?

Subhashis Banerjee, Subodh Sharma

Applications of Zero Knowledge: Proof of Knowledge

» Login to a server with a password.
> Login to a server with a secret key:
» User sends "login id”
» Server sends o = (“Server name”, r).
> User signs o with secret key.
» Server verifies with user's public key.
» User simply proves in Zero-Knowledge that it knows the key S
corresponding to V.

Subhashis Banerjee, Subodh Sharma

