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Private-key encryption

(Source: A Course in Cryptography by Rafael Pass and Abhi Shelat)
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Private-key encryption

Security by obscurity: All of (Gen,Enc,Dec) and k are private.

Modern cryptography: (Gen,Enc,Dec) are public. Only k is private.
Follows Kerchoff’s (1884) principle.

Kerchoff’s (1884) principle implies that at least GEN must be
randomized.

Subhashis Banerjee, Subodh Sharma Crypto basics



Private-key encryption

The triplet of algorithms (Gen,Enc,Dec) is called a private-key
encryption scheme over message space M and key space K if:

1. Gen (called the key generation algorithm) is a randomized algorithm
that returns a key k such that k ∈ K. We denote by k ← Gen the
process of generating a key k .

2. Enc (called the encryption algorithm) is a potentially randomized
algorithm that on input a key k ∈ K and a message m ∈M,
outputs a ciphertext c . We denote by c ← Enck(m) the output of
Enc on input key k and message m.

3. Dec (called the decryption algorithm) is a deterministic algorithm
that on input a key k and a ciphertext c outputs a message
m ∈M∪⊥.

4. ∀m ∈M, Pr [k ← Gen : Deck(Enck(m)) = m] = 1.

Does not specify any privacy or security properties.
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The Caesar cipher

M = {A,B, . . . ,Z}∗

K = {0, 1, . . . , 25}
Gen = k where k

r←− K
Enck(m1 . . .mn) = c1 . . . cn where ci = mi + k mod 26

Deck(c1 . . . cn) = m1 . . .mn where mi = ci − k mod 26

I The Caesar cipher is a private-key encryption scheme.

I Attack: Just try all 26 shifts.
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The substitution cipher

M = {A,B, . . . ,Z}∗

K = the set of permutations of {A,B, . . . ,Z}
Gen = k where k

r←− K
Enck(m1 . . .mn) = c1 . . . cn where ci = k(mi )

Deck(c1 . . . cn) = m1 . . .mn where mi = k−1(ci )

I The substitution cipher is a private-key encryption scheme.

I There are now 26! possible keys.

I Attack: Do a frequency analysis of alphabets in english text.
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‘Crypto cycle’

1. A, the “artist”, invents a security/privacy scheme.

2. A claims (or even mathematically proves) that known attacks do not
work.

3. The security/privacy scheme gets employed widely (often in critical
situations).

4. The scheme eventually gets broken by improved attacks.

5. Restart, usually with a patch to prevent the previous attack.

From Julius Caesar to the government of India, also IT industry.

Subhashis Banerjee, Subodh Sharma Crypto basics



Modern cryptography and provable security

I Provide mathematical definitions of security.

I Provide precise mathematical assumptions (e.g. “factoring is hard”,
where hard is formally defined). These can be viewed as axioms.

I Provide proofs of security, i.e., prove that, if some particular scheme
can be broken, then it contradicts an assumption (or axiom). In
other words, if the assumptions were true, the scheme cannot be
broken.
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Other examples

Secure 2 party computation Allows two parties A and B with private
inputs a and b respectively, to compute a function f (a, b)
that operates on joint inputs a, b while guaranteeing the
same correctness and privacy as if a trusted party had
performed the computation for them, even if either A or B
try to deviate from the proscribed computation in
malicious ways.

Zero-knowledge proofs Allows Alice to convince Bob that some
statement is true; without compromising privacy. For
instance, Alice may want to convince Bob that a number
N is a product of two primes p, q without revealing p or q.
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Possible notions of privacy or security

I The adversary cannot learn (all or part of) the key from the
ciphertext. (Too weak)

I The adversary cannot learn (all, part of, any letter of, any function
of, or any partial information about) the plaintext. (Too strong)

I Given some a priori information, the adversary cannot learn any
additional information about the plaintext by observing the
ciphertext. (Differential)
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Shannon secrecy (1949)

(M,K,Gen,Enc,Dec) is said to be a private-key encryption scheme that
is Shannon-secret with respect to the distribution D over the message
space M if, for all m′ ∈M and for all c ,

Pr [k ← Gen;m← D : m = m′ | Enck(m) = c]

= Pr [m← D : m = m′]

An encryption scheme is said to be Shannon secret if it is Shannon secret
with respect to all distributions D over M.
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Perfect secrecy

(M,K,Gen,Enc,Dec) is said to be a private-key encryption scheme that
is perfectly secret if, for all m1,m2 ∈M, and for all c ,

Pr [k ← Gen : Enck(m1) = c] = Pr [k ← Gen : Enck(m2) = c]

I Shannon secrecy ⇔ perfect secrecy
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One-time pad

M = {0, 1}n

K = {0, 1}n

Gen = k = k1k2 . . . kn ← {0, 1}n

Enck(m1m2 . . .mn) = c1c2 . . . cn where ci = mi ⊕ ki

Deck(c1 . . . cn) = m1 . . .mn where mi = ci ⊕ ki

I The One-Time Pad is a perfectly secure private-key encryption
scheme.

For any c ,m ∈ {0, 1}n, Pr [k ← {0, 1}n : Enck(m) = c] = 2−n

I So, perfect secrecy is obtainable.

I But at what cost?
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Shannon’s theorem and fallouts

I If (M,K,Gen,Enc,Dec) is a perfectly secret private-key encryption
scheme, then | K |≥| M |.

I If | M |>| K |, then there exist m1,m2 ∈M and ε > 0 such that

Pr [k ← K; Enck(m1) = c : m1 ∈ Dec(c)] = 1

Pr [k ← K; Enck(m1) = c : m2 ∈ Dec(c)] = 1− ε

where

Dec(c) = {m | ∃k ∈ K such that m = Deck(c)}; | Dec(c) |≤| K |

I Then there is an attack. Suppose Alice picks m from {m1,m2}
uniformly and sends to Bob. Eve checks if m2 ∈ Dec(c). If yes, she
makes a random guess, otherwise she guesses m = m1. She succeeds
with probability

Pr [m = m2] (1/2) + Pr [m = m1] (ε · 1 + (1− ε) · (1/2)) = 1/2 + ε/4
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Stronger version of Shannon’s theorem

I If (M,K,Gen,Enc,Dec) is a perfectly secret private-key encryption
scheme where M = {0, 1}n and K = {0, 1}n−1, then

Pr [k ← K; Enck(m1) = c : m2 ∈ Dec(c)] ≤ 1/2

I With ε = 1/2, the probability of Eve’s success is 5/8.

I However, it is computationally hard. If K = {0, 1}n, then the attack
requires O(2n) decryptions.
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Efficient computation and polynomial-time bounded
adversary

I A triplet of algorithms Gen,Enc,Dec) is an efficient private-key
encryption scheme if all three are randomized polynomial time
algorithms (probabilistic polynomial time Turing machines, or p.p.t.).

I We allow the adversary to use random coins and require that the
adversary’s running time is bounded by a polynomial. Program size
can also increase polynomially with input length (non-uniform).
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One-way functions

I Basic desiderata
I it must be feasible to generate c given m and k, but
I it must be hard to recover m and k given only c

I A function f is worst-case one-way if

1. there is a p.p.t C that computes f (x) on all inputs x ∈ {0, 1}∗
2. there is no adversary A such that ∀xPr

[
A(f (x)) ∈ f −1(f (x))

]
= 1

I If NP 6⊂ BPP then worst-case one-way functions must exist.

I However, there may be pathological one-way functions that are easy
to invert for most x , but every machine fails to invert f (x) for
infinitely many x ’s.
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One-way functions

I A function ε(n) is a negligible function if for every c , there exists
some n0 such that n > n0, ε(n) < 1/nc .

I A function is strong one-way if any efficient attempt to invert f on
random input succeeds with only negligible probability. That is, for
any adversary A there exists a negligible function ε such that for any
input of length n

Pr [x ← {0, 1}n; y ← f (x) : f (A(1n, y)) = y ] ≤ ε(n)

I A function is weak one-way if ∃ a polynomial function q(n) : N→ N
such that

Pr [x ← {0, 1}n; y ← f (x) : f (A(1n, y)) = y ] ≤ 1− 1

q(n)

(all efficient attempts to invert will fail with some non-negligible
probability)
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Multiplication, primes, factoring

I Is fmult : N2 → N one-way?

fmult(x , y)

{
1 if x = 1 ∨ y = 1
x · y otherwise

I Let
Πn = {q | q < 2n and q is prime}

I Factoring assumption: For every adversary A, there exists a
negligible function ε such that

Pr [p ← Πn; q ← Πn;N ← pq : A(N) ∈ {p, q}] < ε(n)

I The best provable algorithm runs in time 2O((n log n)1/2) and the best

heuristic algorithm runs in time 2O(n1/3 log2/3 n).

I If the factoring assumption is true, then fmult is a weak one-way
function.
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The prime story

I There are infinitely many primes (Euclid, 300 BC).

I “Primes are dense”. The number of primes ≤ N, π(N) ' N/ lnN,
as N →∞ (Prime number theorem - Gauss, Chebyshev).

I There are efficient algorithms to test primality (Miller-Rabin,
Solovay-Strassen, Agrawal-Kayal-Saxena (?)).

I Factorization is not easy. Kleinjung and 12 col-
leagues had this to say in 2010 about the RSA-768 challenge modulus.

We spent half a year on 80 processors on polynomial selection.
This was about 3% of the main task, the sieving, which was done
on many hundreds of machines and took almost two years. On
a single core 2.2 GHz AMD Opteron processor with 2 GB RAM
per core, sieving would have taken about fifteen hundred years.
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Factoring and order finding

I (Theorem) Suppose N is a composite number, and x is a non-trivial
solution to the equation x2 = 1 (mod N) in the range 1 ≤ x ≤ N,
that is, neither x = 1 (mod N) nor x = N − 1 = −1 (mod N). Then
at least one of gcd(x − 1,N) and gcd(x + 1,N) is a non-trivial
factor of N.

I (Theorem) Suppose N = pα1
1 . . . pαm

m is the prime factorization of an
odd composite positive integer. Let x be an integer chosen uniformly
at random, subject to the requirements that 1 ≤ x ≤ N − 1 and x is
co-prime to N. Let r be the order of x modulo N. Then

Pr
[
r is even and x r/2 6= ±1 (mod N)

]
≥ 1− 1

2m
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Factoring and discrete log
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Summary

I A private-key encryption system has perfect secrecy if given
ciphertext c , all messages are equally probable.

I Perfect secrecy ⇔ Shannon secrecy.

I Perfect secrecy is attainable (one-time pad), but it requires
|K| ≥ |M|. Impractical in most situations.

I Often suffices to seek security against a polynomial-time bounded
adversary. [against a non-uniform probabilistic polynomial-time
Turing machine (n.u. p.p.t.)]

I Such security usually derived from one-way functions; from the
assumed hardness of factoring or order finding or discrete log or
some such.
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