Threat models

Basics of threat modelling

- Threat actors
- Adversaries
- Capabilities of adversaries
- Trust vs verifiability
- Clear articulation of all trust points

Case study: Authentication and KYC

Trust model of old-fashioned identity cards

- Presenter trusted?
- Verifier trusted?
- KYC based on identity documents?

Trust model of old-fashioned identity cards

- Presenter trusted?
- Verifier trusted?
- KYC based on identity documents?
 - Possibilities of repurposing?
- Vacuous?

Trust model of smart cards with chips

- Content trustworthy?
 - Under what conditions?
- Presenter?
- Verifier?
- Verifier machine?

Trust model of Aadhaar Based Biometric Authentication

- No trust requirement on presenter?
- What about verifier?

Trust model of Aadhaar Based Biometric Authentication

- No trust requirement on presenter?
- What about verifier?
 - Assume cannot control backend
 - False authorisation and/or accounting?
 - Store and replay?
- What if authentication outcome is routed through the verifier?

Trust models of other authentication methods?

- Passwords
- Ssh authentication (Diffie-Helman key exchange)
- Kerberos authentication

Case study: elections

Identity and eligibility verification

Also polling agents

EVM + VVPAT

Security threat analysis

Threat model

- Adversary can corrupt and control
 - An arbitrary set of polling officials
 - An arbitrary set of voters
 - Voting equipment

Voting requirements

- Correctness
 - Cast as intended
 - Recorded as cast
 - Counted as recorded
 - Only eligible voters and only 1 vote per eligible voters
 - Non-repudiation and dispute resolution
- Secrecy

Receipt free (voter should not be able to prove who she voted for)