Security

- What and why?
- Security vs privacy
- Does crypto give us security?
 - Software?
 - Key?
 - Protocol?

How do we know that a protocol is secure? How do we analyse security?

Crypto basics: symmetric key

- Adityavir (A) and Bhumika (B) have a pre-shared key K. Only they have K
- A encrypts a message M to generate cipher text C using K. We denote this as

• *B* decrypts using K^{-1}

Example: Substitution ciphers. Attacks?

 $C = \{M\}_{K}$

 $M = \{C\}_{K-1}$

Crypto basic: public key cryptography

- Both A and B have public-secret key pairs (K_A, K_A^{-1}) and (K_B, K_B^{-1})
- K_A and K_B are public information, K_A^{-1} and K_B^{-1} are secret info of A and B
- For both, $C = \{M\}_K \iff M = \{C\}_{K^{-1}}$
- To encrypt a message *M* for *B*, *A* sends *C* = {*M*}_{K_B}. Only *B* can decrypt with *M* = {*C*}_{K_B}.
 To sign a message *M*, *A* computes *M'* = {*M*}_{K_A} and sends (*M*, *M'*). Anybody can verify
- To sign a message M, A computes $M' = \{M'\}_{K_A} = M$.
- A can combine the above two to send a signed and encrypted message to B (figure out how and submit by EOD)

A crypto protocol

Adversarial network

Secure?

- After a valid execution, nobody other than A and B should know M
- Does the above always hold? Assume the crypto is bulletproof
- Suppose Pranit (P) is a *man in the middle*
- A sends $(K_A, \{M\}_{K_B})$
- P captures and sends $(K_P, \{M\}_{K_R})$ to B
- B sends back $\{M\}_{K_p}$. P captures. Gone!
- P sends back $\{M\}_{K_A}$ to A. A's check passes.

Certificate Authorities (CA)

- that case, B would compute $M' = \{C'\}_{K_p^{-1}}$
- A proposed solution is a *trusted third party*, a **CA** (say Suban (S).
- S may issue a certificate to each party
- For example, S may issue to A

 $C(A) = \{A$

- R_A and E_A usually are access rights and expiry dates.
- your computer/phone/browser?

• Of course, without handshaking, S can change the the cipher text $C = \{M\}_{K_P}$ itself to C'. In

$$\{A, K_A, R_A, R_A, E_A\}_{K_S^{-1}}$$

• Assignment: Figure out what are the trusted third party certificates, and how are they stored on

The Denning-Sacco disaster (1982?)

- The protocol
- $A \longrightarrow S : A, B$ $S \longrightarrow A : C(A), C(B)$
- Suppose B wants to masquerade as A to P?

$A \longrightarrow B : C(A), C(B), \{\{T_A, K_{AB}\}_{K_A^{-1}}\}_{K_B}\}_{K_B}$

The Denning-Sacco disaster (1982?)

- The protocol
- $A \longrightarrow S : A, B$ $S \longrightarrow A : C(A), C(B)$
- $A \longrightarrow B : C(A), C(B), \{\{T_A, K_{AB}\}_{K_A^{-1}}\}_{K_B}\}$
- Suppose *B* wants to masquerade as *A* to *P*?
- B gets from C(P) from S, strips off the outer encryption $\{\ldots\}_{K_R}$ from item 3
- Solution?

• B makes a bogus third message $B \longrightarrow C : C(B), C(C), \{\{T_A, K_{AB}\}_{K_A^{-1}}\}_{K_C}$

A session protocol Symmetric key

- $A \longrightarrow S : \{T_A, B, K_{AB}\}_{K_{AS}}$
- $S \longrightarrow B : \{T_S, A, K_{AB}\}_{K_{BS}}$
- K_{AB} is the session key, which may be valid for T_S duration
- Attack?

A session protocol Symmetric key

- $A \longrightarrow S : \{T_A, B, K_{AB}\}_{K_{AS}}$
- $S \longrightarrow B : \{T_S, A, K_{AB}\}_{K_{BS}}$
- K_{AB} is the session key, which may be valid for T_S duration
- Attack?
- *C* can prolong the session by sending $\{T_S, A, K_{AB}\}_{K_{BS}}$ to *S* to get back a $\{T'_S, B, K_{AB}\}_{K_{AS}}$, and send that to get back a $\{T''_S, A, K_{AB}\}_{K_{BS}}$
- C can keep the **replay attack** alive till he can steal a key

The perils of challenge-response

- Consider the following protocol for A logging onto B:
 - $A \longrightarrow B : A$ $A \longrightarrow B : \{N_B\}_{K_{AS}}$ $B \longrightarrow S : \{A, \{N_B\}_{K_{AS}}\}_{K_{RS}}$
 - $S \longrightarrow B : \{N_B\}_{K_{BS}}$

 $B \longrightarrow A : N_B$ (a random challenge)

The perils of challenge-response

- Consider the following protocol for A logging onto B:
 - $A \longrightarrow B : A$ $B \longrightarrow A : N_R$ (a random challenge) $A \longrightarrow B : \{N_B\}_{K_{AS}}$ $B \longrightarrow S : \{A, \{N_B\}_{K_{AS}}\}_{K_{RS}}$ $S \longrightarrow B : \{N_B\}_{K_{PC}}$
- . The only connection between the last two exchanges is that one shortly follows the other.

Is this correct?

$A \longrightarrow B : A$

 $B \longrightarrow A : N_B$ (a random challenge)

 $A \longrightarrow B : \{B, N_B\}_{K_{AS}}$

 $B \longrightarrow S : \{A, \{B, N_B\}_{K_{AS}}\}_{K_{BS}}$

 $S \longrightarrow B : \{N_B, A\}_{K_{BS}}$

Threat model

- Actors?
- Adversaries?
- Capabilities of adversaries?
- Trust vs verifiability
- Clear articulation of all trust points
- UPI?