JASB Hands-On Weekend:
Bugs & Bytes

0. Meet the Parts

Button

Raspberry Pi Pico Buzzer

Potentiometer Resistors
Breadboard OLED Dlsplay

Raspberry Pi Pico

e A PiPico is a microcontroller, which is essentially a programmable device for
controlling other electronic devices

e A self contained system with its own processor, memory, IO peripherals, all
integrated on one chip

1. Connecting Pico to your laptop

2. Working with the Internal LED

from machine import Pin
led = Pin(25, Pin.OUT)

led.on()

from machine import Pin
from time import sleep

led = Pin(25, Pin.OUT)
led.on()
sleep(2)

led.off ()

from machine import Pin
from time import sleep

led = Pin(25, Pin.OUT)

make the LED blink!

for step in range(190):
led.on()
sleep(0.5) # on for 0.5s
led.off()
sleep(0.5) # off for 0.5s

3. Working with an External LED

Wire the Ground Pin
of Pico to the snmnmsniamannanianioainii:
rightmost column on (L1 e L L
the breadboard (now

the entire column 1is

negative!) L e

Connect one end of ;::::: oot :::::: SRis @aiie Leuen aasus REses :::::J'r
Resistor to GP15

Connect second end of from machine import Pin

FEeSStor 1 SAE FEn from time import sleep
as LED’s positive
(longer) terminal led2 = Pin(15, Pin.OUT)
connect your resistor to Pin 15
Connect LED’s
negative terminal led2.on()
(shorter end) to the

§g$azi)(negative sleep(2)

led2.off()

Play around with the external LED!

e Make the external LED blink

e Make the internal LED and
external LED alternate

4. Connecting a Button!

Wire the 3v3 port to
the inner column of
the rightmost section
of the breadboard
(now the 1dinner column
is + and outer is -)

Plug in the button
across the middle
section of the board

Connect the top row
of the button to Pin
14

Connect the bottom
row of the button to
the + column

from machine import Pin
from time import sleep

ledl = Pin(25, Pin.oUT)
led2 = Pin(15, Pin.OUT)
resistor connected to Pin15

button = Pin(14, Pin.IN, Pin.PULL_DOWN)
button top connected to Pinl4

while True:
if button.value():
print("LIGHTING UP!")
led2.on()
else:
led2.off()

5. Connecting a Buzzer!

Keep everything from
before 1intact!

Connect positive
terminal of buzzer
(longer end) to Pin
11

Connect negative
terminal of buzzer to
Ground (the column or
a Ground pin)

VSIS
GND

* 3V3_EN
e 3V3

ADC_VREF

» GP28_A2

s AGND

* GP27_A1

* GP26_A0

RUN

GP22 c E
GND

GP21

GP26

GP19

GP18

GND
GP17
GP16

ledl = Pin(25, Pin.OUT)
led2 = Pin(15, Pin.OUT)
resistor connected to Pinil5

button = Pin(14, Pin.IN, Pin.PULL_DOWN)

button top connected to Pinl4

buzzer = Pin(11, Pin.OUT)
buzzer + connected to Pinll

print("Listening for Button Press ...

while True:

if button.value():
print("LIGHTING UP!")
ledl.on()
led2.on()
buzzer.on()

else:
ledl.off()
led2.off()
buzzer.off()

)

Play around with all the components so far!

e Can you make the buzzer play
different sounds? A song
maybe?

e Add rave lighting (blinking
LEDs) to your song?

6. Working with an OLED display

The 12C Protocol & SSD1306: Overview

The Hardware

GND - A power pin for a
connection to the ground GND VDD SCK SODA

SSD1306 OLED Text

(negative terminal) -

VDD - A power pin for a
connection to the positive
terminal

SCK - The OLED’s serial clock,
deals with the timing
information (in signals)

SDA - The OLED’s serial data,
used to transfer data between
the OLED and Pi Pico

Relationship Problems:
How do we communicate?

We use IIC! Or I2C/I*C for
short.

What 1is 1it?

Inter-integrated circuit.
Essentially, once the
connections between the Pi
Pico and OLED are made, I2C
takes over and dictates what
data is sent between the two
devices, as well as how
frequently.

Look at the Pi Pico diagram
handed to you! How many I2C
connections can be made?

UARTO TX -[12C0SDA - SPIORX -IINGRONI-ER—01 !
UARTO RX -[12C0SCL - SPI0 csn -IGRTIHEL—102

o\ I P Use
[12cTSDA - spiosck -INGPZINHI—D

JUARTAIXI- 12C0SDA - spiorx -IGPANEH—D &

o O} vBus
39C !—E:l- VSYS
o =235 e D)

_ OEE3— ADC_VREF

=
morsosorc-memma-o L] =@ ewow
' L

JUARTARXI- 12C0SCL - SPI0 csn -NGRSINHER—=0
oo 0

[12C1SDA - SPI0 SCK -IGRE T H—1
[12c1SCL - spioTX -INGPZIHT—=0O
JUARTATXI- 12C0 SDA - SPiTRX -IINGPENNHE—0
JUARTAIRXI- 12C0 SCL - SPI1 Csn -INGPIIIHE—0
eno B0 .

[12C1SDA - sPi1 sck -IEEiIoNH—0 .l

l12c1scL - sPn Tx -INGPIIIEHE—0O
[UARTOTX- 12COSDA - SPI1RX -INGPIZHI—D
[UARTORX- 12COSCL - SPI1 Csn GRS HEH—0
eno B30

[12C1SDA - SPI1 SCK INGPTANHT =0 P

[12C1SCL - SPITTX _-EJ—D0i i

@2020

ico

Raspberry Pi P

aNs —X

P uART Il GPIO, PIO, and PWM

i
C=—EHEGREE- ADC2

=
.

{7 INGRIZN- $PioCsn - 1200 oL -JUARTORX]
o CO=—FHIGRTENE- SPIORX - 12C0 SDA -JUARTOTXI

B systemcControl [l Debugging

Some more interface details: SSD1306

While I2C takes care of the
communication issues, how do we
actually display stuff?

The answer is SSD1306! It 1is a

library that allows you to turn
pixels on and off on the OLED,

giving you the power to create

any image you want on a 128x64

screen!

We first need to install this
library on our Pi Pico

Manage packages for Raspberry Pi Pico @ [dev/cu.usbmodem144401

Tools Help

Manage packages... (
[] Open system shell...

Open Thonny program folder...
Open Thonny data folder...

Manage plug-ins...
Options...

for R berry Pi Pico @ /dev/cu.usbmodem144401

ssd1306 Search on PyPI

micropython-ssd1306

micropython_ssd1306

picozero
Installed version: 0.3
Installed to: /lib

Latest stable version: 0.3

Summary: ssd1306 module for MicroPython

Author: Stefan Lehmann

Homepage: https://github.com/stlehmann/micropython-ssd1306
PyPI page: https://pypi.org/project/micropython-ssd1306/

Uninstall

Making the connections

Raspberry Pi Pico + SSD1306 I2C OLED
GP8 (pin 11) SDA
GP9 (pin 12) SCL

1
iF
12

= O VWoNOU AW

14
15
16
17
18
19
20
21

Let’s start drawing!

from machine import Pin, SoftI2C
import ssd1306
from time import sleep

The specification for the OLED Display we are using
WIDTH = 128
HEIGHT = 64

connection = SoftI2C(sda = Pin(8), scl = Pin(1))
oled = ssd1306_SSD1306 I2C(WIDTH, HEIGHT, connection)

Clears the screen
oled.fill(©)
oled.show()

sleep(1)

oled.fill(1)
oled.show()

23
24
25
26
27
28
29
30
31
32
33
34
35
36

Playing around a bit more!

Clears the screen, and turns on the pixel at (32, 32)
oled.fill(®)

oled.pixel(32, 32, 1)

oled.show()

Draws a line from (12, 13) to (28, 55)
oled.fill(®)

oled.line(12, 13, 28, 55, 1)

oled.show()

Draws a rectangle at (28, 12) of width 10 and height 15
oled.fill(®)

oled.rect(28, 12, 10, 15, 1) # or oled.fill rect(28, 12, 10, 15, 1)
oled.show(ﬂ

8. Working with a potentiometer

This diagram shows the underside
potentiometer has three pins: of the pico. it is horizontally

A
flipped with respect to the top.
1. Ground/Power
p
3

. Analog Signal Out
. Power/Ground A .*‘

° VBUS @ GPO
Use F-M jumper wires to connect the " o e o
potentiometer to the breadboard, and g s
) GP3
use the female ends for the legs of 3v3 - ~
h] e ADC_VREF GP4
the potentiometer . o
e AGND GND
° GP27_A1 GP6
GP26_A0 GP26_AO0 GP7
1 | from picozero import Pot # Pot is short for Potentiometer * RUN GP8
2 | from time import sleep e c E GP9
3 GND > GND GND
; 2 - . GP10
4 | dial = Pot(@) # Connected to pin AQ@ (GP_26) - &
o GP20 GP11
5
GP19 GP12
6 | while True: N —_
¥ print(dial.value) . o S0
8 sleep(0.1) # slow down the output . GP16 GP15

.
Yo) Swo1o
p Ol

¥® swcLk

Inspecting the Range

from picozero import Pot 1
from time import sleep ;
dial = Pot(2) 4
values =] >
6

for i in range(100): 7
reading = dial.value 8

values.append(reading) 2

sleep(0.05) 10
11

from picozero import Pot
from time import sleep

dial = Pot(2)
values = []

for i in range(100):
reading = dial.value
values.append(reading)
sleep(©.05)

print(min(values), max(valdés))print(min(values), max(values))

9. Pong

38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54
55

Exercise: Helper Function Setup

return the sign of x (+1 or -1)
def sgn(x):
pass

the input thing is in the range [minin, maxin], the output should be in
the range [minout, maxout] with linear scaling
def remap(thing, minin, maxin, minout, maxout):

pass

the input thing is in any range, the output should be thing clamped (truncated)
to the range [minout, maxout]
def clamp(thing, minout, maxout):

pass

assume that the I2C SDA connection for an OLED is present at pin GP(sda)
and the SCL connection is present at the GP(sda + 1), return an SSD1306 objecd
def oled_connect(sda):

pass

Exercise: Potentiometer

(0,0) (128, 0)

Complete the following function
using the data from our earlier
inspection of the potentiometer’s
range to get the y position of a pixel
based on the potentiometer’s input.

The pixel should be able to “move”
or occupy every vertical position

possible on the screen (and ideally
not leave the screen). (0,128) (128, 128)

57 # the pot input is a potentiometer object. based on the coordinate system,
58 # think about the range of this function's returned value

59 def get y position(pot):

60 pass

Controlling a Pixel: Definitions

62 WIDTH = 128

63 HEIGHT = 64

64

65 FRAME_RATE = 6©

66 PADDLE_DIMS = (8, 16)

67 BALL_DIMS = (5, 5)

68

69 OLED_ATTACH = ©

76 POT_IN = ©

71

72 # Replace these values with your potentiometer's range,
73 # and use them in your get_y position implementation
74 POTENTIO_MIN = ©

75 POTENTIO_MAX = 1

(put these at the top of your file, just after the imports)

Controlling a Pixel

Upon running this code, if everything has
been implemented correctly, you should see
a pixel on the OLED'’s first column, which
you can move using the potentiometer.

Next, we will extend this single pixel to be
our paddle.

Exercise: Have your get_y position
implementation use the PADDLE_DIMS
definition, where the first element is the
width of a paddle and the second element is
the height.

77
78
79
80
81
82
83
84
85
86
87

oled = oled_connect(OLED_ATTACH)
pot = Pot(POT_IN)

this is our game loop
while True:

oled.fill(®)

pos = get_y position(pot)

oled.pixel(@, pos, 1)
oled. show()
sleep(1l / FRAME_RATE)|

Paddles

89 # a paddle can be represented as the x & y position of

90 # its top-left pixel

91 paddle_l = (@, get_y position(pot))

92

93 # what should the coordinates be for the right paddle, if we
94 # want it to be placed at the center of the last column?

95 paddle_r = (???, ?2??)|

96

97 # ...game loop

99 # the oled input is the ssd1306 object, and the paddle is
100 # the (x, y) tuple containing the paddle's position
101 # use the PADDLE_DIMS definition here
102 def draw_paddle(oled, paddle):
103 pass

Replace the pixel drawing code in the game loop to draw both paddles
using this function. Make sure to update paddle_| before drawing it

Introducing the Ball

e The ball is the most complex object in the BOEW i st baII(:
106 yv = random.randint(-3, 3)
game 107 while yv == 0:
. q . 108 yv = random.randint(-3, 3)
e |t has a velocity, is expected to collide (and e
110 # The ball is placed at the center of the screen
bounce off Of) walls and paddles and 111 return ((WIDTH - BALL_DIMS[@]) // 2, (HEIGHT - BALL_DIMS[1]) // 2, 2, yv)
! 112
detect when a point is scored. ol e D hssion To draw the input ball.
e We represent the ball as (x, y, xv, yv), s
o 17
where xv and yv are x-velocity and 118 # we will fill this in later]
. . 119 def update_ball(ball, paddles):
y-velocity respectively] -
e We create a reset_ball helper function, =
used to initialise the ball, and to reset it B
126 # ... game loop

whenever a point is scored.

Updated Game Loop

128 # ...

129 while True:

130 oled.fill(®)

131 pos = get_y position(pot)
132 paddle_1 = (@, pos)

133

134 draw_paddle(paddle 1)

135 draw_paddle(paddle_r)

136

137 update_ball(ball, [paddle_1l, paddle_r])
138 draw_ball(ball)|

139

140 oled.show()

141 sleep(l / FRAME_RATE)

update ball: Wall Collisions

143 # definitions...

144

145 score = (0, 0)

146

147 # helpers...

148

149 def update_ball(ball, paddles):

150 global score

1515 X, ¥, Xv, yv = ball

152,

153 # A: paddle collisions (later)
154

155 # B: horizontal wall collisions
156 reset = x < © or x >= WIDTH - ???
157

158 if x < 8:

) score = (score[@], score[l1l] + 1)
160

161 if x >= WIDTH - ???:

162 score = (score[@] + 1, score[1])
163

164 if reset:

165 return reset_ball()

166

167 # C: vertical wall bounces

168 if y < @:

169 y =0

17e yv *= -1

171 return (x, y, Xv, yv)

172

173 if y > HEIGHT - BALL_DIMS[1]:
174 y = HEIGHT - BALL_DIMS[1]
175 yv *= -1

176 return (x, y, Xv, yv)

177

178 # D: no collisions

179 return (round(x + xv), round(y + yv), Xv, yv)

rect_Intersection

Returns true if rectangles A and B,
expressed as (X, y, w, h), intersect.
Takes in parameters x_off and y_off to
offset rectangle A before comparing.

56 def rect_intersection(A, B, x_off = @, y off = 0):

57 # no intersection if any of the widths or heights are ©

58 i€ Al2] ==/ or Al3] == 8 or B|2] =9 or B]3] == ©:

59 return False

60

61 # if A is completely to the right of B or B is completely to the right of A
62 if A[@] + x_off > B[@] + B[2] or B[@] > A[@] + x_off + A[2]:
63 return False

64

65 # if A is completely below B or B is completely below A

66 if A[1] + y_off > B[1] + B[3] or B[1] > A[1] + y_off + A[3]:
67 return False

68

69 return True

Line 218 has an
error, hv should
be xv

Paddle Collision

197 def update_ball(ball, paddles):

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

global score
X, Y, XV, yv = ball

A: paddle collisions
ball bb = (x, y, BALL_DIMS[@], BALL_DIMS[1])

for paddle in paddles:
paddle_collision = False
test_bb = (paddle[@], paddle[1], PADDLE_DIMS[@], PADDLE_DIMS[1])

if yv != @ and rect_intersection(ball_bb, test_bb, @, yv):
paddle_collision = True
while not rect_intersection(ball_bb, test_bb, ©, sgn(yv)):

y += sgn(yv)
ball _bb = (x, y, BALL_DIMS[@], BALL_DIMS[1])
V=
if not paddle_collision and xv != @ and rect_intersection(ball_bb, test_bb, xv):

paddle_collision = True
while not rect_intersection(ball_bb, test_bb, sgn(xv)):
x += sgn(hv)
ball bb = (x, y, BALL_DIMS[@], BALL_DIMS[1])
VA=

if paddle_collision:
return (x, y, Xv, yv)

Exercise: Score Display

Write a function to display the score, and add it to the game loop.

10. Making up an Opponent (Pong Al)

