
IASB Hands-On Weekend:
Bugs & Bytes

Pong with Pi Pico - Day 1

0. Meet the Parts

Raspberry Pi Pico LED Jumper Wires

Potentiometer Resistors
Breadboard OLED Display

Buzzer
Button

Raspberry Pi Pico

● A Pi Pico is a microcontroller, which is essentially a programmable device for
controlling other electronic devices

● A self contained system with its own processor, memory, IO peripherals, all
integrated on one chip

1. Connecting Pico to your laptop

Pico & anThonny

2. Working with the Internal LED

3. Working with an External LED

1. Wire the Ground Pin
of Pico to the
rightmost column on
the breadboard (now
the entire column is
negative!)

2. Connect one end of
Resistor to GP15

3. Connect second end of
Resistor to same row
as LED’s positive
(longer) terminal

4. Connect LED’s
negative terminal
(shorter end) to the
ground (negative
column)

1

2

3

4

Play around with the external LED!

● Make the external LED blink

● Make the internal LED and
external LED alternate

4. Connecting a Button!

1. Wire the 3v3 port to
the inner column of
the rightmost section
of the breadboard
(now the inner column
is + and outer is -)

2. Plug in the button
across the middle
section of the board

3. Connect the top row
of the button to Pin
14

4. Connect the bottom
row of the button to
the + column

1

2

3

4

5. Connecting a Buzzer!

GP11

0. Keep everything from
before intact!

1. Connect positive
terminal of buzzer
(longer end) to Pin
11

2. Connect negative
terminal of buzzer to
Ground (the column or
a Ground pin)

Play around with all the components so far!

● Can you make the buzzer play
different sounds? A song
maybe?

● Add rave lighting (blinking
LEDs) to your song?

6. Working with an OLED display

The I2C Protocol & SSD1306: Overview

The Hardware
GND - A power pin for a
connection to the ground
(negative terminal)

VDD - A power pin for a
connection to the positive
terminal

SCK - The OLED’s serial clock,
deals with the timing
information (in signals)

SDA - The OLED’s serial data,
used to transfer data between
the OLED and Pi Pico

Relationship Problems:
How do we communicate?

We use IIC! Or I2C/I²C for
short.

What is it?

Inter-integrated circuit.
Essentially, once the
connections between the Pi
Pico and OLED are made, I2C
takes over and dictates what
data is sent between the two
devices, as well as how
frequently.

Look at the Pi Pico diagram
handed to you! How many I2C
connections can be made?

Some more interface details: SSD1306

While I2C takes care of the
communication issues, how do we
actually display stuff?

The answer is SSD1306! It is a
library that allows you to turn
pixels on and off on the OLED,
giving you the power to create
any image you want on a 128x64
screen!

We first need to install this
library on our Pi Pico

Making the connections

Let’s start drawing!

Playing around a bit more!

8. Working with a potentiometer

A potentiometer has three pins:
1. Ground/Power
2. Analog Signal Out
3. Power/Ground

Use F-M jumper wires to connect the
potentiometer to the breadboard, and
use the female ends for the legs of
the potentiometer

This diagram shows the underside
of the pico, it is horizontally

flipped with respect to the top.

Inspecting the Range
from picozero import Pot
from time import sleep

dial = Pot(2)
values = []

for i in range(100):
 reading = dial.value
 values.append(reading)
 sleep(0.05)

print(min(values), max(values))

9. Pong

Exercise: Helper Function Setup

Exercise: Potentiometer

Complete the following function
using the data from our earlier
inspection of the potentiometer’s
range to get the y position of a pixel
based on the potentiometer’s input.

The pixel should be able to “move”
or occupy every vertical position
possible on the screen (and ideally
not leave the screen).

Controlling a Pixel: Definitions

(put these at the top of your file, just after the imports)

Controlling a Pixel

Upon running this code, if everything has
been implemented correctly, you should see
a pixel on the OLED’s first column, which
you can move using the potentiometer.

Next, we will extend this single pixel to be
our paddle.

Exercise: Have your get_y_position
implementation use the PADDLE_DIMS
definition, where the first element is the
width of a paddle and the second element is
the height.

Paddles

Replace the pixel drawing code in the game loop to draw both paddles
using this function. Make sure to update paddle_l before drawing it

Introducing the Ball

● The ball is the most complex object in the
game

● It has a velocity, is expected to collide (and
bounce off of) walls and paddles, and
detect when a point is scored.

● We represent the ball as (x, y, xv, yv),
where xv and yv are x-velocity and
y-velocity respectively

● We create a reset_ball helper function,
used to initialise the ball, and to reset it
whenever a point is scored.

Updated Game Loop

update_ball: Wall Collisions

rect_intersection
Returns true if rectangles A and B,
expressed as (x, y, w, h), intersect.
Takes in parameters x_off and y_off to
offset rectangle A before comparing.

Paddle Collision

Line 218 has an
error, hv should
be xv

Exercise: Score Display
Write a function to display the score, and add it to the game loop.

10. Making up an Opponent (Pong AI)

