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Modern language models such as bidirectional
encoder representations from transformers have
revolutionized natural language processing (NLP)
tasks but are computationally intensive, limiting
their deployment on edge devices. This paper
presents an energy-efficient accelerator design
tailored for encoder-based language models,
enabling their integration into mobile and
edge computing environments. A data-flow-aware
hardware accelerator design for language models
inspired by Simba, makes use of approximate
fixed-point POSIT-based multipliers and uses high
bandwidth memory (HBM) in achieving significant
improvements in computational efficiency, power
consumption, area and latency compared to
the hardware-realized scalable accelerator Simba.
Compared to Simba, AxLaM achieves a ninefold
energy reduction, 58% area reduction and 1.2 times
improved latency, making it suitable for deployment
in edge devices. The energy efficiency of AxLaN
is 1.8 TOPS/W, 65% higher than FACT, which
requires pre-processing of the language model before
implementing it on the hardware.
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1. Introduction
The rapid advancements in natural language processing (NLP) have led to the development
of powerful language models such as GPT and bidirectional encoder representations from
transformers (BERT) [1,2], which excel in tasks such as text classification, question answering
and language translation. However, the computational intensity and memory requirements of
these models pose significant challenges for deployment on edge devices, which are con-
strained by limited power and computational resources [3].

Edge deployment of language models is crucial for applications requiring real-time
processing and data privacy, such as mobile assistants, IoT devices and autonomous systems.
Offloading computations to the cloud introduces latency and potential security risks owing to
data transmission [4]. Therefore, there is a pressing need for specialized hardware accelerators
that can efficiently run these models within the stringent power and area budgets of edge
devices, compared to general-purpose computing environments.

In this paper, we present an energy-efficient accelerator design, for battery-powered edge
devices, specifically optimized for encoder-based models such as BERT. Our main contributions
are as follows:

(i) We, for the first time, show that a highly quantized and approximated variant of POSIT
[5] can incur a negligible loss of accuracy compared to the Float-Point32 (FP32) encoding
scheme for BERT. The resultant multiply accumulate (MAC) unit requires approximately 0.3
pJ for a MAC operation in 65 nm (approx. 69 times better than FP32). (ii) We present a fine-
tuning method that allows the direct use of the pre-trained BERT to use the number system
without structural changes to the neural network. To the best of our knowledge, this is the
first time quantization without accuracy loss has been achieved without structural changes
and retraining. (iii) Based on the hardware–software co-design approach, we introduce an
optimized processing element (PE) architecture that leverages near-data processing on high
bandwidth memory (HBM) [6] and the approximate fixed-point POSIT (AFPOS) number
system to significantly reduce power consumption and area, by leveraging, for the first time,
the three-dimensional spatial data reuse opportunity in BERT. (iv) We provide a comprehen-
sive evaluation of our design against the hardware-realized accelerator Simba, demonstrat-
ing improvements in computational efficiency, power consumption, area and latency, while
maintaining negligible accuracy loss on the CoLA dataset using BERT-large. Furthermore, we
compare our work with eight recent accelerators for LLMs (that require structural modification
to BERT) and demonstrate superior area and energy efficiency.

The rest of the paper is organized as follows: in §2 we review related work, in §3 we
give details of our accelerator design approach, while in §4 we describe the methodology and
evaluation infrastructure. In §5 we present the experimental results and analysis, then in §6 we
discus implications and limitations; §7 concludes the paper.

2. Related work
Hardware–software co-design has long been central to optimizing system performance by
considering both hardware and software components. Early research, such as [3] and [7],
emphasized automatic parallelization and self-programming systems to reduce memory
operations and enhance data communication. In machine learning accelerators, especially for
deep learning, several architectures have emerged. Simba [8] introduced a scalable multi-chip
framework optimized for convolutional neural networks (CNNs), but it faces challenges with
transformer models owing to differing computational patterns.

Recent accelerators specifically target transformers. For instance, OPTIMUS [9] focuses
on enhancing matrix multiplication efficiency, while A3 [10] accelerates the attention mech-
anism through the use of approximation techniques. NVIDIA’s Transformer Engine [11]
employs specialized tensor cores for faster inference, and SwiftTron [12] applies 8-bit
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quantization for resource-constrained environments. Further advancements include co-opti-
mization and processing-in-memory (PIM) strategies. The H3D-Transformer [13] combines
PIM with edge-specific optimizations, while ReTransformer [14] utilizes a ReRAM-based PIM
architecture. TransPIM [15] focuses on memory-based acceleration through hardware–software
co-design. More details on these comparisons are provided in §5, specifically in §5c. Current
designs often require modifications to neural networks or lack comprehensive system-level implemen-
tations, particularly in managing off-chip memory access and supporting various integer formats.
Moreover, these accelerators typically necessitate significant changes to the model structure to fully
support transformers.

Our work introduces an accelerator leveraging HBM3 and the AFPOS number system,
optimized for encoder-based models such as BERT. This design offers a system-level solu-
tion for edge deployment, improving performance and efficiency without altering the model
structure. In addition, number system-aware fine-tuning of the BERT model ensures accuracy
comparable to FP32. For hardware comparison, Simba is used owing to its flexibility and broad
acceptance, as recent works lack silicon implementation. Nonetheless, results are evaluated
against recent accelerators, as discussed in §5, particularly in §5c.

3. Accelerator design approach
(a) Background—BERT: use cases and internal structure
BERT [1] is a pre-trained language model introduced by Google in 2018. Unlike traditional
CNN models, BERT uses bidirectional training, leveraging both preceding and succeeding
contexts to predict words, which results in a deeper understanding of language. This approach
has led to state-of-the-art performance across various NLP tasks. BERT excels in tasks such
as text classification, named entity recognition, question answering, sentiment analysis and
language translation [16]. Its pre-trained nature allows for fine-tuning, making it versatile and
well-suited for edge applications.

BERT is based on the Transformer architecture, consisting of an input embedding layer,
multiple Transformer encoder blocks and an output layer. Each encoder block includes a
multi-head self-attention mechanism and a feed-forward neural network. Tokens are embedded
with positional encodings and processed through Transformer blocks. The BERT-large model
has specific parameters: a model dimensionality (dmodel) of 1024, 24 Transformer blocks (N),
each with 16 attention heads (H). The key/query (dk) and value (dv) vectors have dimensionsdmodel/H = 64. Each attention head computes a 1024 × 1024 matrix, with concatenated outputs
passed through a linear transformation to produce the final layer output:

MultiHead (Q,K,V) = Concat (head1, head2, …)WO,

where WO is the weight matrix that maps the concatenated output to the embedding size,dmodel = 1024. After multi-head attention, the output undergoes a residual connection and layer
normalization and is processed through a feed-forward neural network, which first increases
and then reduces dimensionality. The matrix operations are listed in table 1. These operations
enhance computational efficiency and consistency. BERT’s effect on NLP tasks has made it a
leading model, with scalable configurations such as BERT-base and BERT-large suitable for
various environments. BERT’s performance is recognized in MLPerf [16], making it the baseline
workload for our design.

(b) Background—spatial and temporal reuse in hardware accelerator
While efforts exist to accelerate BERT [17,18], no accelerators have been specifically optimized
for edge scenarios, as noted in [2,3]. In edge computing, the Simba architecture is a leading
solution for deep neural network inference [8,19], thanks to its advanced vector multipliers
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and accumulators that share input activations while outputting to multiple channels. Notably,
Simba features a data-agnostic design, making it robust against data distribution variations.

At the core of Simba, illustrated in figure 1, is the PE, responsible for executing convolutional
layers, fully connected layers and post-processing operations such as bias addition, ReLU and
pooling. Each PE contains eight lanes, each using a distinct weight tensor to generate elements
for a single output channel (K). An 8-bit precision vector MAC unit within each lane multiplies
eight input elements from different channels (C) with eight weight elements, summing them
to produce a single output. This approach is highly efficient, given typical channel counts (64–
1024). The architecture is supported by local input activation, output activation and accumula-
tion SRAMs, which buffer the datapath. Energy efficiency is optimized by minimizing SRAM
access: input activation SRAM is read every cycle, and its elements are forwarded across lanes.
The weight SRAM, wider than the input activation SRAM, supplies distinct vectors to each lane
and reuses weights across multiple inputs, reusing them P × Q times (where P and Q are output
dimensions). Accumulation SRAM stores intermediate sums, conserving energy by accumulat-
ing the eight-wide vector from C channels. The output size, often exceeding the accumulation
buffer’s capacity, requires temporal tiling to generate portions of output activations sequentially.
This buffer also supports cross-PE reductions when the weight kernel spans multiple PEs.
Post-processing tasks such as ReLU, bias addition and pooling are performed after accumula-
tion. The buffer is dual-banked, allowing simultaneous access by MACs, routers and post-pro-
cessing units, with an arbitration crossbar to resolve bank conflicts.

(c) Motivation for a new architecture design
The growing complexity and computational demands of NLP, particularly models such as
BERT, have exposed the limitations of existing hardware accelerators for machine learning
(ML). Accelerators for BERT, which are primarily based on FPGA platforms [18] or the more
recent ASIC designs [2], often require significant modifications to the neural network archi-
tecture to achieve operational efficiency. Additionally, such modifications, including extreme
quantization or mixed-signal processing techniques, frequently result in a notable loss of
accuracy [2,13,20]. While the Simba architecture, owing to silicon realization and data-agnostic
operation, has been recognized as a leading solution for deep neural network inference, its
efficacy diminishes when confronted with the distinct computational demands of BERT’s matrix
operations. The various matrix multiplications, particularly those involving the QKV (Query,
Key, Value) operations, impose a substantial power burden, primarily owing to the significant
DRAM accesses required, as illustrated in figure 2. These multiplications, as listed in table 1,
highlight the computational challenges that Simba faces when deployed for models such as
BERT.

The QKV operations, though not the largest in magnitude, play a critical role in BERT’s
performance owing to relatively frequent computation (16 times each per encoder block). The
power consumption associated with these operations is exacerbated by the limited data reuse
inherent in their matrix multiplications. In energy-efficient computing, small buffer sizes are

Table 1. Summary of unique matrix operations in BERT’s encoder.

operation matrix L dimensions matrix R dimensions result dimensions

Q/K/V 1024 × 1024 1024 × 64 1024 × 64

attention 1024 × 64 64 × 1024 1024 × 1024

multi-head 1024 × 1024 1024 × 1024 1024 × 1024

bottleneck expand 1024 × 1024 1024 × 4096 1024 × 4096

bottleneck contract 1024 × 4096 4096 × 1024 1024 × 1024
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often preferred to optimize the power consumption of such operations. However, as the buffer
sizes increase, the energy required for data access also rises, leading to further inefficiencies.
Conversely, operations such as Bottleneck Contraction (BtlCont), Bottleneck Expansion (BtlExp)
and Multi-Head Attention (MHead) exhibit a more pronounced data reuse pattern. Each output
word in these operations depends on approximately 1024 input words, allowing for a signifi-
cant reduction in access counts as buffer sizes grow. This characteristic makes large buffer sizes
essential to fully exploit data reuse, thereby improving power efficiency in these layers.

Despite these insights, the Simba architecture’s current design is not well-suited to meet
the diverse computational requirements of BERT’s matrix operations. Simba’s average power
consumption, 9 and 19 W, respectively, for INT8 and FP16 pipelines, is far beyond the
acceptable range for edge and portable applications, which typically impose stringent power
constraints, often below 5 W [21]. Therefore, while Simba excels in certain scenarios, its inability
to efficiently handle the unique demands of BERT’s matrix multiplications underscores the need
for a new architecture that can better address these challenges.

Figure 1. Simba’s PE architecture [8].

Figure 2. Simba’s (with FP16 MAC for accuracy preservation) system power for processing matrices in BERT’s encoder.
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(d) Design consideration: challenges to be addressed
Efficient hardware accelerators for neural networks such as BERT must address several key
challenges: high DRAM access count, on-chip buffer energy consumption and on-chip compute
energy efficiency.

(i) Reducing high DRAM access count and energy consumption: high DRAM access
significantly effects overall energy consumption. To mitigate this, increasing the on-
chip buffer size can reduce the frequency of DRAM accesses by enhancing data reuse
and minimizing energy-intensive memory transactions. This approach leverages larger
buffers to store more data locally, thereby reducing the need for frequent access to
external memory.

(ii) Reducing energy at the on-chip buffer level: while larger on-chip buffers can reduce
DRAM access, they can also lead to increased energy consumption within the chip.
This challenge can be managed by optimizing memory hierarchies with multi-level
buffering strategies and exploiting opportunities for temporal and data sharing within
the application. Effective buffer management ensures that the energy benefits of reduced
DRAM access are not offset by increased internal energy costs.

(iii) The energy required for on-chip computations, particularly MAC operations, is a
significant consideration for BERT’s intensive computations. Reducing this energy
footprint can be achieved by employing low-power arithmetic units with reduced
precision and by implementing operand-sharing techniques to maximize the reuse of
input data. These strategies help lower the energy consumption associated with each
computation, making the overall processing more efficient.

(e) Design consideration: on-chip buffer size and memory accesses
The unique matrix multiplications within BERT’s encoder exhibit distinct DRAM access
patterns that significantly effect the power consumption associated with different buffer
sizes. The primary objective is to select a buffer size that minimizes the overall system
energy consumption (considering on-chip data reuse) during data accesses and computational
processes. As shown in figure 3a, the DRAM access count varies with increasing total buffer
size, offering valuable insights into data reuse and how frequently each matrix multiplication
operation requires access to main memory. To complement this, figure 3b illustrates the energy
per byte access data for different buffer sizes, highlighting the energy implications of choosing
specific buffer configurations. Balancing the frequency of DRAM accesses against the energy
overhead of larger buffers is critical in determining the most energy-efficient buffer size.
To achieve optimal energy efficiency, both the frequency of DRAM accesses for each matrix
multiplication and the energy cost associated with each access—given a specific buffer size—
must be considered. Additionally, the repetitive nature of BERT’s matrix operations within the
encoder should be taken into account, as certain operations recur more frequently, potentially
skewing the overall energy profile. For instance, while QKV operations may require fewer
DRAM accesses in some buffer configurations, their central role in the encoder and frequent
occurrence contribute significantly to the total energy consumption.

Comparing the DRAM access count data with buffer access energy, it becomes evident
that smaller buffer sizes generally exhibit lower energy costs per access. However, as buffer
sizes increase, while DRAM access counts typically decrease, the energy cost per access rises.
Considering all available metrics, an intermediate buffer size appears to strike the best balance
between reducing DRAM accesses and maintaining manageable energy costs per access.
Analysis suggests that buffer sizes in the range of 64–128 KB may be appropriate, as indicated
by the trends in the provided data. However, further refinement of this range is necessary,
particularly by considering the specific frequency of each matrix operation in BERT’s encoder.
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(f) Opportunity: HBM logic layer for bandwidth and low access energy
Traditional DDR DRAM (such as DDR4 DRAM) is insufficient for handling the high frequency
memory accesses required by BERT’s encoders, where DRAM access energy is a major concern
[22]. HBM3 [6] offers a tenfold reduction in access energy per bit (4.2 versus 46 pJ), making it
a superior choice for BERT’s frequent matrix multiplications, significantly enhancing accelerator
efficiency. HBM3’s design is well-suited for BERT-like models, allowing direct integration of
accelerator designs within its logic layer (up to 30 mm2 and 8.5 W power [23]), as supported
by recent manufacturer initiatives [24]. This integration minimizes data movement, reducing
latencies and further cutting energy consumption, crucial for the high data reuse in BERT’s
encoders. HBM3’s structure stacks DRAM dies atop a logic layer, connected via through-sili-
con vias, achieving a compact memory footprint. It vastly outperforms DDR4 in bandwidth,
offering approximately 512 GB/s per stack compared to DDR4’s 25.6 GB/s, making HBM3
ideal for high-throughput, rapid-access applications [6]. However, this presents three main
challenges: ensuring balanced access to all HBM memory channels, managing design area
constraints and addressing thermal and power limitations.

(g) Addressing the high MAC energy
In accelerators for complex language models such as BERT, MAC operations are the second
highest contributors to power consumption after DRAM access, as shown in figure 2. Tradi-
tional 8-bit integer operations, while efficient, do not meet the precision demands of BERT,
necessitating a solution that combines floating-point precision with reduced power overheads
(figure 4). Recent advancements in multiplier design, such as the POSIT number system
introduced by Gustafson & Yonemoto [5], offer a promising alternative. POSITs, defined by
parameters (N , es), provide dynamic flexibility, allowing efficient space usage by encoding
exponent and fraction parts only when necessary. However, the increased area and power
requirements of POSITs present challenges. To mitigate these, the fixed-POSIT representation
was developed [25], which standardizes the regime length (rf) alongside N and es. The AFPOS
multiplier further refines this approach, optimizing for area, energy and latency while requiring
25% less bit storage than fixed-POSITs [22]. Our experimentation has shown that fixing the 2β
term for AFPOS (with 1-bit sign, 4-bit exponent and 3-bit mantissa) to 2−7 results in negligible
loss of accuracy compared to FP32, as shown in figure 5. For the rest of the paper, AFPOS refers
to this (N = 10, es = 4, β = −7) configuration. Table 2 lists the latency, area and energy of these
multipliers. We have highlighted the designs with the highest quantization yet having similar
accuracy and Matthews correlation coefficient (MCC) score as FP32. Compared to a quantized
16-bit floating-point multiplier, AFPOS reduces area by a factor of 4.04, energy by a factor of 8.9

Figure 3. (a) DRAM access count versus on-chip buffer size while processing BERT. (b) Access energy of buffers against size,
compute and HBM.
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and latency by a factor of 2.1. We use a 16-wide vector MAC, with area, latency and power as
listed in table 3, for efficient spatial reduction.

(h) PE design details and innovations
BERT’s computational architecture, particularly its vector multipliers, poses unique challenges
distinct from frameworks such as Simba. In Simba, shared input activations among a set of
vector multipliers, along with exclusive weights, allow weights to be read once and reused
multiple times. This resource optimization, however, is not inherent in BERT. When dealing
with matrices L and R (as seen in table 1), if the elements of R are temporarily stationary, those
of L require constant cycling and vice versa. This dynamic underscores the need to efficiently
amortize read energy costs, leading to a redesigned vector MAC and PE, as shown in figure 6.
Instead of employing 16 separate PEs, we propose a unified PE that optimizes shared resource
utilization while maintaining an acceptable fan-out. For each read of an element in L, the
element contributes to the partial product of eight distinct columns, while efficient reads from R
enable participation in eight different rows of the output matrix. A simplified representation of
this concept is illustrated in figure 7, where words read together are annotated with alphanu-
meric labels and sources are colour-coded equally compared to figure 6. Furthermore, within
a column or row, 16 elements are multiplied together and accumulated using the vector MAC
and written to the accumulation buffer (A.SRAM). We choose this configuration, as the baseline
Simba instance, in efficiency mode, offers 1 TOPS throughput (which offers sub-1 s inference of
BERT-large). Our goal is to achieve a similar throughput with our vector MAC configuration,
with the parallel adder tree. The operational strategy dictates that either the L or R matrix
elements must be refreshed upon completing each operand set. To balance energy efficiency
and performance, our design incorporates an 8 KB buffer for all L buffers and an equivalent
capacity for the R buffers. The A.SRAM is designed to cache partial products, enabling efficient
summation.

(i) Design parameter justification

The unified PE is directly interfaced with all 16 channels of HBM through memory controllers,
occupying only 2.5 mm2 of the available 30 mm2 space, leaving ample room for additional
designs, as shown in figure 4. The vector MAC operates at 500 MHz (as listed in table 3) to
optimize energy efficiency. The choice of a 16-wide vector MAC is based on achieving the
desired throughput of 1 TOPS, equivalent to Simba’s efficiency mode. Further widening of the
vector MAC would introduce significant combinational delays, while increasing the operating
frequency would substantially raise area and energy consumption. This throughput also meets
the sub-1 s response time expected for edge devices. Simulations revealed that increasing the
total number of multipliers led to diminishing returns owing to memory bandwidth limitations.
The 8 KB buffer size was selected to strike a balance between on-logic die storage and energy
consumption. While larger buffers reduce DRAM accesses, they also increase access energy per
byte, as shown in figure 3b. Our analysis determined that 8 KB of local buffer per row and
column offers an optimal balance for handling BERT’s workload efficiently.

4. Methodology
(a) Evaluation infrastructure
At the software level, we model BERT using a PyTorch-based GPU accelerated framework,
modified to support different number representations, including AFPOS. In the framework, the
flow of data is altered such that the data are encoded into the specified encoding scheme (such
as BFloat, POSIT or AFPOS) before multiplication. This allows the framework to use the IEEE
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754 Float-based pre-trained BERT model without alteration. After fine-tuning the model with
the CoLA dataset, we measure the accuracy and MCC scores against the full-precision model
(result shown in figure 5). We use this software framework for reproducibility and for exact
computation and score calculation.

For hardware modelling, we use Cadence Genus to synthesize the MAC units (of all
encoding schemes) at a 65 nm node, ensuring timing constraints are met at 500 MHz frequency.
SRAM buffers are modelled using CACTI [26]. System-level modelling and optimal data
search (for least latency followed by least energy) are performed with Timeloop, Accelergy
and Alladin framework [7,27], defining both Simba and our proposed architecture based on
synthesized values. For Simba, the external DRAM memory used is DDR4 DRAM, and the
hardware model is identical to the hardware-realized version of Simba [8]. Our proposed work
is modelled as a design instantiated on the logic layer of the HBM3 memory. We use this
hardware model framework as it has been validated against real hardware and allows for
flexible extensions.

(b) Workload description
We focus on the unique matrix operations within BERT’s encoder, as listed in table 1. These
operations include the QKV computations, attention mechanisms, multi-head concatenations
and feed-forward networks. The network level performance of any variation of BERT-large can
be extrapolated from these matrices.

Figure 4. HBM3 structure showing vacant space for accelerator placement.

Figure 5. Model accuracy and MCC score of BERT for various encoding schemes, fine-tuned on the CoLA dataset. Approximate
fixed POSIT value = (−1)sign × 2β × 2exp × (1.mantissa)
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5. Results
(a) Latency and energy
Figure 8 compares the latency during the processing of each unique matrix by Simba and
the proposed design. Although both designs feature an identical RAW throughput of 1 TOPS,
Simba’s reduced data reuse, particularly in the QKV and attention matrices, limits its ability
to fully utilize all MAC units owing to bandwidth constraints. This inefficiency results in a
1.2 times speedup for the proposed design. Each encoder is processed within 27 ms, enabling
the complete BERT-large model to be processed in 0.6 s, well within the acceptable latency
threshold for handheld/edge devices performing natural language tasks, even when processing
up to 1000 tokens.

Figure 9 shows the amortized energy cost of a MAC operation at the system level, compar-
ing Simba, a variant of Simba (Simba with AFPOS multipliers, Simba implemented in HBM3’s
logic layer and Simba implemented with AFPOS multiplier in HBM3’s logic layer) and the
proposed designs implemented with HBM3 and the candidate multipliers. The average of
each implementation in figure 9 represent weighted average operations corresponding to an
encoder in BERT-large. The AFPOS-adapted version provides insight into the effect of changing

Figure 6. Unified PE design of the proposed accelerator.

Figure 7. Simplified example showing operations that can be performed in a single cycle in parallel.
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the number system alone. The proposed design (AxLaM (AFPOS)) demonstrates the lowest
energy per MAC operation with a ninefold reduction in energy consumption, primarily owing
to decreased DRAM access and multiplication energy compared to Simba. By only altering
the multiplier in Simba, the energy difference narrows to sevenfold for the proposed design.
Additionally, the internal buffer energy is halved in the proposed design, which is attributed to
the improved PE organization.

(b) Area and power constraints comparison: Simba versus proposed design
Integrating the proposed design within the available area of the HBM3 memory’s logic die
offers substantial benefits in bandwidth and energy efficiency. Figure 10 illustrates the area
distribution for the various components of the design. Compared to the Simba design, the
proposed design not only adheres to the 36 mm2 area constraint of HBM3 but also significantly
reduces it to just 2.5 mm2. This efficiency is primarily due to the streamlined single PE design of
the proposed system, as opposed to Simba’s more expansive 16 PE architecture, resulting in an
impressive 58% reduction in area.

In terms of power consumption, the proposed design shows marked improvement,
consuming only 1.103 W, which is a ninefold reduction compared to Simba’s 9.34 W (INT8).

Figure 8. Performance comparison.

Figure 9. Energy comparison.

Figure 10. Simba versus proposed design area comparison.
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This significant decrease ensures that the proposed design comfortably fits within HBM3’s 8.5
W power limit [6]. Power consumption is calculated based on the energy and time required to
process one full encoder of BERT.

(c) Comparison with other recent accelerators
Table 4 lists a comparison between our proposed design, AxLaM and recent accelerators such as
OPTIMUS, A3, Transformer Engine, SwiftTron and others. Energy efficiency has been normal-
ized to a 65 nm node based on voltage and capacitance scaling models. AxLaM distinguishes
itself through the use of the AFPOS system, achieving a throughput of 1 TOPS with a normal-
ized energy efficiency of 1.3 TOPS/W. This positions AxLaM as one of the most energy-efficient
designs, particularly for BERT, all within a compact 2.5 mm2 area on a 65 nm process node.

While other accelerators, such as the Transformer Engine, offer higher raw throughput,
they fall short in terms of energy efficiency. AxLaM also demonstrates superior area efficiency,
especially when compared to designs such as Swiftron and H3D, which require significantly
more space. AxLaM effectively balances throughput, energy efficiency and area, making it a
highly competitive solution for edge devices focused on NLP tasks.

In terms of energy efficiency, H3D [13] and FACT [20] are the closest competitors. However,
FACT requires modifications to the language model. The actual benefit comes from algorithm
changes applied to BERT before porting it on the hardware. On the other hand, H3D, being
based on analogue computing, suffers from high variability and is not suitable for mass

Table 4. Comparison with recent accelerators.

accelerator original implementation
detail

target
models

area
(mm2)

throughput
(TOPS)

normalized E.
efficiency
(TOPS/W)

remarks

OPTIMUS [9] ASIC simulation, 28 nm

synthesized circuits

transformers 5.2 0.5 0.127 INT 16

A3 [10] ASIC simulation, 40 nm

synthesized circuits

BERT base 2.08 N/A N/A INT 8

Transformer

engine [11]

hardware implementation

inside 4 nm H100 GPU

ANY N/A 1978 0.04 FP 8

Swiftron [12] 65 nm ASIC synthesized and

simulated

RoBERTa 273 8 0.236 INT 8

FACT [20] 28 nm ASIC synthesized and

simulated

BERT 6.05 0.928 1.1* INT 4 + 8

(HW–SW co-design)

ReTransformer [14] 28 nm RRAM-based CIM

simulated

custom N/A 0.081 0.2 MIXED SIGNAL

TransPIM [15] 22 nm DRAM-based CIM

simulated

RoBERTa 53.15 0.734 N/A BIT-SERIAL

H3D [13] 7 nm digital and 22 nm

analogue CIM simulated

BERT/GPT 47.3 1.6 1.07 MIXED SIGNAL

Simba [8] 16 nm hardware

implementation

vector ×

matrix

6 0.3 to 4 0.039–0.31 INT8

(silicon realized)

AxLaM

(OURS)

ASIC simulation, 65 nm

synthesized circuits

BERT 2.5 1 1.85 AFPOS
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manufacturability. This further emphasizes AxLaM’s robustness and suitability for practical
deployment.

6. Discussion
Our results demonstrate that the proposed accelerator design significantly improves energy
efficiency, area utilization and latency for running language models such as BERT on edge
devices. By integrating with HBM3 and utilizing the AFPOS number system, we address the
key challenges of power consumption and memory access bottlenecks.

The accuracy of our AFPOS BERT-large model remains comparable to the full-precision
model, ensuring that performance is not sacrificed for efficiency. The design scales well with
input token sizes, making it suitable for a range of NLP applications.

However, our study is limited by the availability of detailed data for some recent accelera-
tors, and actual hardware implementation is required to fully validate the simulation results.
Future work includes implementing the design on an FPGA or ASIC platform and explor-
ing further optimizations. The exploration and analysis of encoding schemes, including all
variations of POSITs, though performed, have been left out for brevity.

7. Conclusion
We have presented an energy-efficient accelerator design tailored for encoder-based language
models such as BERT, suitable for deployment on mobile and edge devices. By leveraging
near-data processing, an optimized PE architecture and the AFPOS number system, our
design achieves significant improvements over the hardware-realized state-of-the-art accelera-
tor Simba. We also show the energy and area improvements over other LLM accelerators that
require extensive DNN structural changes.

Our work contributes to enabling real-time, privacy-preserving NLP applications on edge
devices, opening avenues for further research in efficient hardware designs for complex
language models.
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