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Total points: 19

Dealer Wins.



How is this different?



I can be somewhere in a 
region but where am I?



A Markov Decision Process (MDP) is a sequential 
decision process for a fully observable, stochastic 

environment with a Markovian transition model and 
additive rewards.





Partially Observable Markov Decision Process 
(POMDP) is a generalization of a MDP but does not 

assume that the state is fully observable.



Let’s formalise this
(We are not playing games anymore)
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Markov Decision Processes

𝑀𝐷𝑃 ≔ (𝑆, 𝐴, 𝑃, 𝑅, 𝛾)

At each discrete time 𝑡, an agent selects an action 𝑎𝑡 ∈ 𝐴 in state 𝑠𝑡 ∈  𝑆, transitions to the next 
state 𝑠𝑡+1 with probability 𝑃 𝑠𝑡+1  𝑠𝑡, 𝑎𝑡), and receives the immediate reward 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)



GOAL
Choose actions at each step that maximize its 

expected future discounted reward



Find a strategy (policy) 𝜋: 𝑠𝑡 ∈ 𝑆 → 𝑎𝑡 ∈ 𝐴(𝑠) that maximize value,
 

v = ෍

𝑡=0

∞

𝛾𝑡𝑟𝑡

where

• 𝑟𝑡 is the reward earned at time 𝑡.
• 𝛾 is the discount factor. 



How to solve this?



Value Iteration Algorithm



Value Iteration Algorithm

*Theorem: Value iteration converges.
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Partially Observable Markov Decision Processes

𝑃𝑂𝑀𝐷𝑃 ≔ (𝑆, 𝐴, 𝑃, 𝑅, 𝛾, 𝑂, Ω)

At each discrete time 𝑡, an agent makes observation 𝑜 ∈ 𝑂, selects an action 𝑎𝑡 ∈ 𝐴, 
transitions to the next state 𝑠𝑡+1 with probability Ω 𝑜  𝑠𝑡+1, 𝑎𝑡), and receives the immediate 

reward 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)



After having taken the action 𝑎𝑡 and observing 𝑜𝑡, a player (agent) needs to update its 
belief in the state the environment may (or not) be in.



After having taken the action 𝑎𝑡 and observing 𝑜𝑡, a player (agent) needs to update its 
belief in the state the environment may (or not) be in.

What is belief?



Belief State and Space

After reaching 𝑠𝑡+1 , the agent observes 𝑜𝑡 ∈ 𝑂 with probability Ω(𝑜𝑡 ∣ 𝑠𝑡+1, 𝑎𝑡). Let 𝑏 
be a probability distribution over the state space 𝑆. 𝑏(𝑠𝑡) denotes the probability that 
the environment is in state 𝑠𝑡. Given 𝑏(𝑠𝑡), then after taking action and observing 𝑜𝑡,

𝑏′ 𝑠𝑡+1 = 𝜂 Ω 𝑜𝑡 𝑠𝑡+1, 𝑎𝑡 ෍

𝑠∈𝑆

𝑃(𝑠𝑡+1 ∣ 𝑠𝑡 , 𝑎𝑡) 𝑏(𝑠𝑡)

where 

𝜂 =  
1

Pr 𝑜𝑡 ∣ 𝑏, 𝑎𝑡  
is a normalizing constant with

Pr 𝑜𝑡 𝑏, 𝑎𝑡 = ෍

𝑠𝑡+1∈𝑆

Ω 𝑜𝑡 𝑠𝑡+1, 𝑎𝑡 ෍ 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝑏(𝑠𝑡) 



Find a strategy (policy) 𝜋: 𝑏(𝑠𝑡) ∈ 𝛽 → 𝑎𝑡 ∈ 𝐴(𝑠) that maximize value,
 

v(b) = ෍

𝑡=0

∞

𝛾𝑡𝑟𝑡

where

• 𝑟𝑡 is the reward earned at time 𝑡.
• 𝛾 is the discount factor.

What’s the point?



Let’s model Blackjack



Blackjack as POMDP

• 𝑆 = 𝑝, 𝑑 : 𝑝, 𝑑 ∈ 1,2, ⋯ , 21 ∪ 𝑊𝑖𝑛, 𝐿𝑜𝑠𝑒, 𝐷𝑟𝑎𝑤 ∪ 𝑅, 𝑁𝑅
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• 𝑂 ∶=  𝑆 𝑤𝑖𝑡ℎ 𝑁𝑅

• Ω ≔ s ∈ 𝑆 with uniform probability 



Can we use the same algorithm to solve POMDPs?



Can we use the same algorithm to solve POMDPs?

NO
Value iteration updates cannot be carried out because uncountable number of belief states 

𝒃(𝒔𝒕) ∈ 𝜷



Resources
❑ POMDP Tutorial: https://www.pomdp.org/tutorial/pomdp-

solving.html

❑ Lovejoy 1991: A survey of algorithmic methods for partially 
observed Markov decision processes

❑ Wikipedia: 
https://en.wikipedia.org/wiki/Partially_observable_Markov_de
cision_process

https://www.pomdp.org/tutorial/pomdp-solving.html
https://www.pomdp.org/tutorial/pomdp-solving.html
https://en.wikipedia.org/wiki/Partially_observable_Markov_decision_process
https://en.wikipedia.org/wiki/Partially_observable_Markov_decision_process
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