Are we still playing games?
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Total points: 16
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How is this different?



| can be somewhere in 3
region but where am [?



A Markov Decision Process (MDP) is a sequential
decision process for a fully observable, stochastic
environment with a Markovian transition model and
additive rewards.
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Partially Observable Markov Decision Process
(POMDP) is a generalization of a MDP but does not
assume that the state is fully observable.




| et’s formalise this

(We are not playing games anymore)



Markov Decision Processes
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MDP = (S5,A,P,R,y)
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Markov Decision Processes
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At each discrete time t, an agent selects an action a; € A in state s; € §, transitions to the next
state 5,44 with probability P(s¢41]| S, a;), and receives the immediate reward R(s¢, g, Sg4+1)



GOAL
Choose actions at each step that maximize its
expected future discounted reward



Find a strategy (policy) m: sy € S = a; € A(s) that maximize value,

where

e rlisthe reward earned at time t.
* yisthe discount factor.



How to solve this?



Value Iteration Algorithm



Value Iteration Algorithm

Input : MDP M = (S, s0, A, Pa(s' | 5),7(s,a,s"))
Output : Value function V

Set V to arbitrary value function; e.g., V(s) = 0 for all s

repeat
A0
foreachsc S

V'(s) ¢ maxaea(s) Lyes Pals'| 5) [r(s,a,8) + v V(5]

-

Bn]]ma.nchuatic-n
A +— max(A, |V'(s) — V(s)])
V V!
until A < 68

*Theorem: Value iteration converges.



Partially Observable Markov Decision Processes
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Partially Observable Markov Decision Processes
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Partially Observable Markov Decision Processes
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POMDP = (S,4,P,R,y,0,0Q)
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At each discrete time t, an agent makes observation o € O, selects an action a; € A,
transitions to the next state s;,; with probability Q(o| s¢4+1,a;), and receives the immediate
reward R(s¢, Q¢, Sg41)



After having taken the action a; and observing o, a player (agent) needs to update its
belief in the state the environment may (or not) be in.



After having taken the action a; and observing o, a player (agent) needs to update its
belief in the state the environment may (or not) be in.

What is belief?



Belief State and Space

After reaching s;,1 , the agent observes o; € O with probability Q(o; | s¢41,a;). Let b
be a probability distribution over the state space S. b(s;) denotes the probability that
the environment is in state s;. Given b(s;), then after taking action and observing o,

b'(st+1) =1 Q(o0; | St+1:at)2 P(St41 1 St a¢) b(se)

SES
where

1
Pr(o; | b,a;)

TI:

is a normalizing constant with

Pr(o; | b,a;) = z Q(o; | 5t+1»at)zp(5t+1 | s¢,a; )b(st)

St+1€S



What’s the point?

Find a strategy (policy) m: b(s;) € B — a; € A(s) that maximize value,

v(b) = [i ytrt]

t=0

where

e rlisthe reward earned at time t.
e yisthe discount factor.



Let’s model Blackjack



Blackjack as POMDP

e S = {(p, d):p,d € {1,2, ---,21}} U {Win, Lose, Draw} U {R, NR}
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Blackjack as POMDP

e S = {(p, d):p,d € {1,2, ---,21}} U {Win, Lose, Draw} U {R, NR}
« A ={Hit,Stay}

e« P:=SXAXS - [0,1] where the probability of each action is 1—13



Blackjack as POMDP

S = {(p, d):p,de{1,2,-, 21}} U {Win, Lose, Draw} U {R, NR}
A = {Hit,Stay}
P:=85x%xAXxS —|0,1] where the probability of each action is 1—13

R € [0,1]



Blackjack as POMDP

S = {(p, d):p,de{1,2,-, 21}} U {Win, Lose, Draw} U {R, NR}
A = {Hit,Stay}

P:=85x%xAXxS —|0,1] where the probability of each action is 1—13
R € [0,1]

y € [0,1]



Blackjack as POMDP

S = {(p, d):p,de{1,2,-, 21}} U {Win, Lose, Draw} U {R, NR}
A = {Hit,Stay}

P:=85x%xAXxS —|0,1] where the probability of each action is 1—13
R € [0,1]

y €10,1]

O := Swith NR



Blackjack as POMDP

S = {(p, d):p,de{1,2,-, 21}} U {Win, Lose, Draw} U {R, NR}
A = {Hit,Stay}

P:=85x%xAXxS —|0,1] where the probability of each action is 1—13
R € [0,1]

y €10,1]

O := Swith NR

() := s € S with uniform probability



Can we use the same algorithm to solve POMDPs?



Can we use the same algorithm to solve POMDPs?

Input : MDP M = (S, s0, A, Py(s" | 5),7(s,a,5))
Output : Value function V

Set V to arbitrary value function; e.g., V(s) = 0 for all s

repeat
A0

foreachse 8 b(s;) €EP
Vi(s) « MaXgeA(s) Zsfespa{ﬁl | 5) [T{E:- a,s’) + VESIJ]
) Bellman equation
A +— max(A, |V'(s) — V{(s)|)
V V!
until A <68

-

NO
Value iteration updates cannot be carried out because uncountable number of belief states



Resources

J POMDP Tutorial: https://www.pomdp.org/tutorial/pomdp-
solving.html

J Lovejoy 1991: A survey of algorithmic methods for partially
observed Markov decision processes

J Wikipedia:
https://en.wikipedia.org/wiki/Partially observable Markov de

CISION Process



https://www.pomdp.org/tutorial/pomdp-solving.html
https://www.pomdp.org/tutorial/pomdp-solving.html
https://en.wikipedia.org/wiki/Partially_observable_Markov_decision_process
https://en.wikipedia.org/wiki/Partially_observable_Markov_decision_process
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