Are we still playing games?

20N

Player

Player

Player

Player



Player

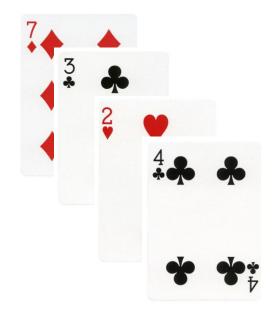
Hit or Stay?

Player

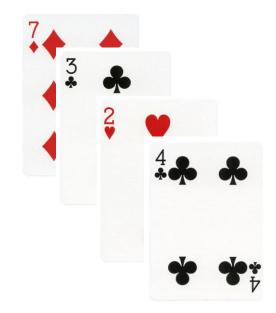
Player

Hit or Stay?

Player

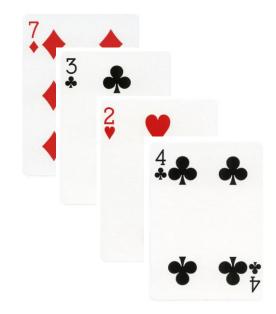


Player

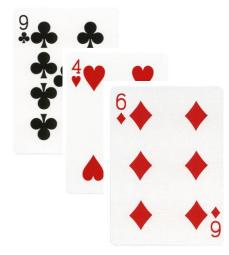


Hit or Stay?

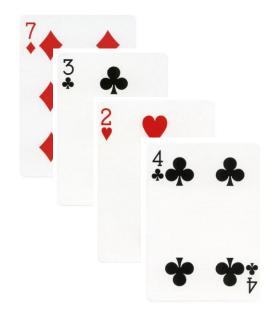
Player



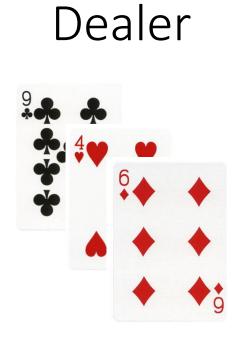
Total points: 16



Player

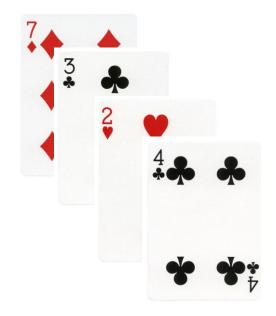


Total points: 16

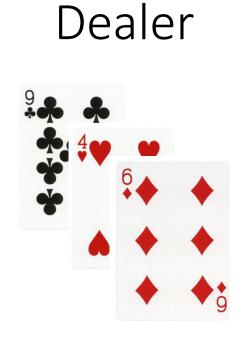


Total points: 19

Player

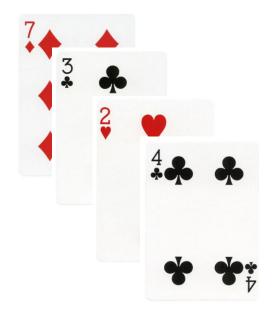


Total points: 16



Total points: 19

Player



Total points: 16

Dealer Wins.

How is this different?

I can be somewhere in a region but where am I?

A Markov Decision Process (MDP) is a sequential decision process for a <u>fully observable</u>, <u>stochastic</u> <u>environment</u> with a <u>Markovian transition model</u> and <u>additive rewards</u>.

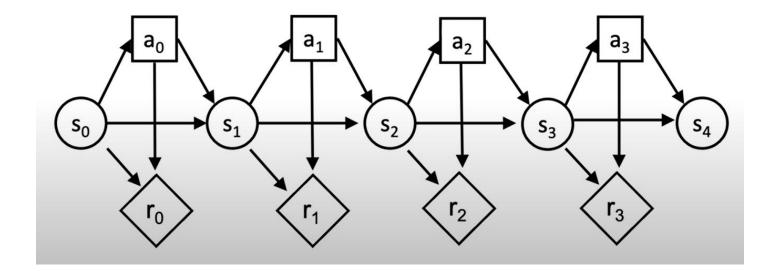
Good old MDP 1111111111 Les Miserables Real life

Partially Observable Markov Decision Process (POMDP) is a <u>generalization of a MDP</u> but **does not assume that the state is fully observable**.

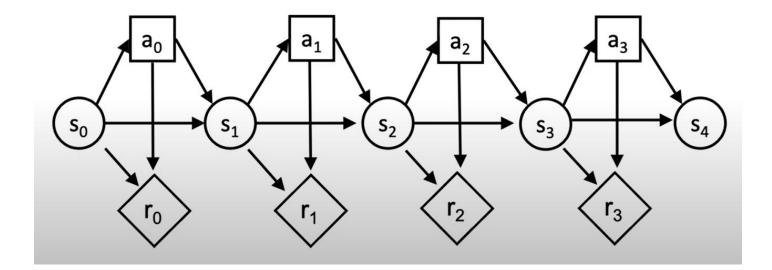
Let's formalise this

(We are not playing games anymore)



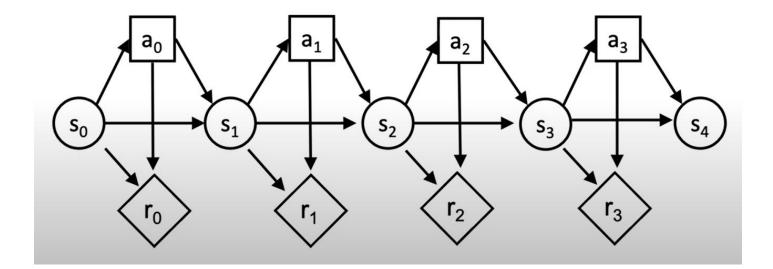


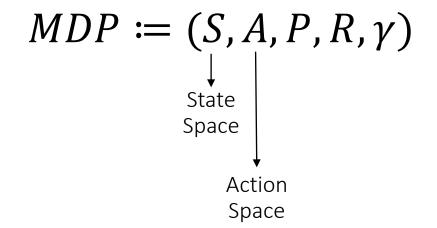
 $MDP \coloneqq (S, A, P, R, \gamma)$

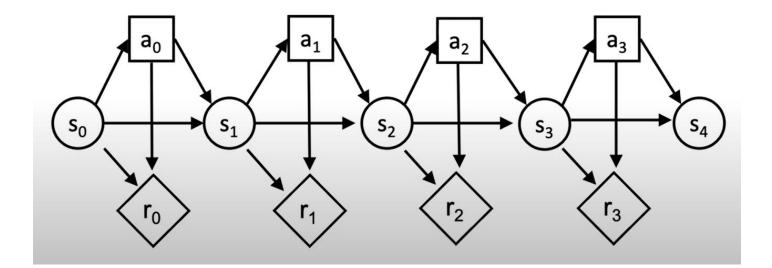


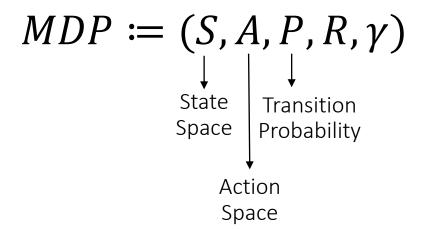
$$MDP \coloneqq (S, A, P, R, \gamma)$$

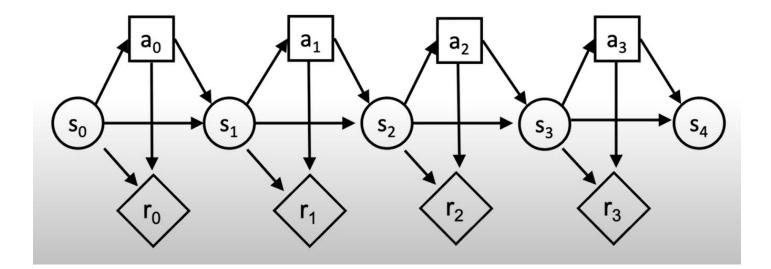
$$\downarrow_{\text{State}}_{\text{Space}}$$

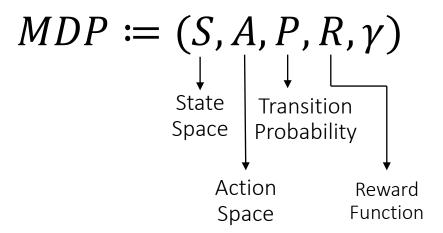


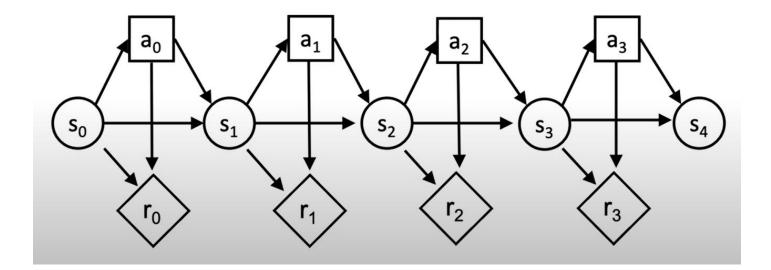


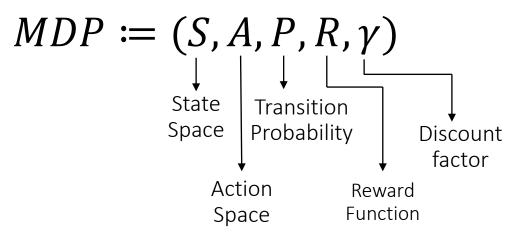


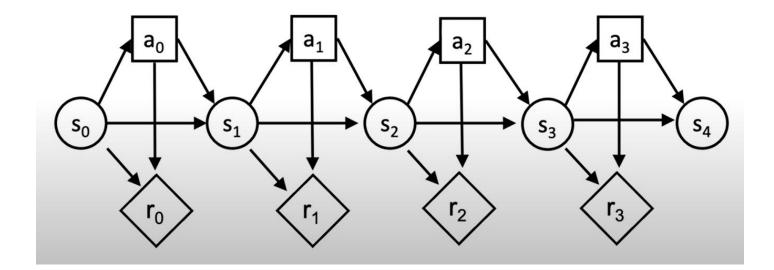












 $MDP \coloneqq (S, A, P, R, \gamma)$

At each discrete time t, an agent selects an action $a_t \in A$ in state $s_t \in S$, transitions to the next state s_{t+1} with probability $P(s_{t+1} | s_t, a_t)$, and receives the immediate reward $R(s_t, a_t, s_{t+1})$

GOAL

Choose actions at each step that maximize its expected future discounted reward

Find a strategy (policy) $\pi: s_t \in S \rightarrow a_t \in A(s)$ that maximize value,

$$\mathbf{v} = \left[\sum_{t=0}^{\infty} \gamma^t r^t\right]$$

where

- r^t is the reward earned at time t.
- γ is the discount factor.

How to solve this?

Value Iteration Algorithm

Value Iteration Algorithm

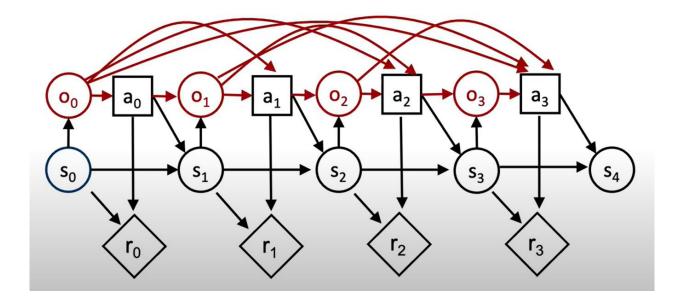
Input : MDP $M = \langle S, s_0, A, P_a(s' | s), r(s, a, s') \rangle$ **Output** : Value function V

Set V to arbitrary value function; e.g., V(s) = 0 for all s

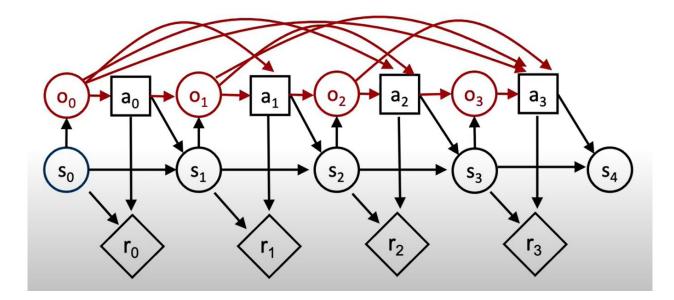
repeat

 $\begin{array}{l} \Delta \leftarrow 0 \\ \textbf{for each } s \in S \\ \underbrace{V'(s) \leftarrow \max_{a \in A(s)} \sum_{s' \in S} P_a(s' \mid s) \left[r(s, a, s') + \gamma \, V(s')\right]}_{\text{Bellman equation}} \\ \Delta \leftarrow \max(\Delta, |V'(s) - V(s)|) \\ V \leftarrow V' \\ \textbf{until } \Delta \leq \theta \end{array}$

Partially Observable Markov Decision Processes

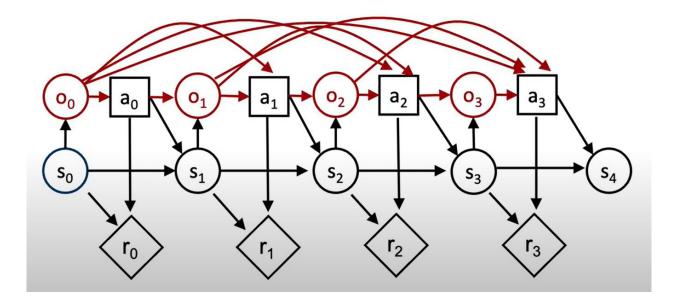


Partially Observable Markov Decision Processes



 $POMDP \coloneqq (S, A, P, R, \gamma, \mathbf{0}, \Omega)$

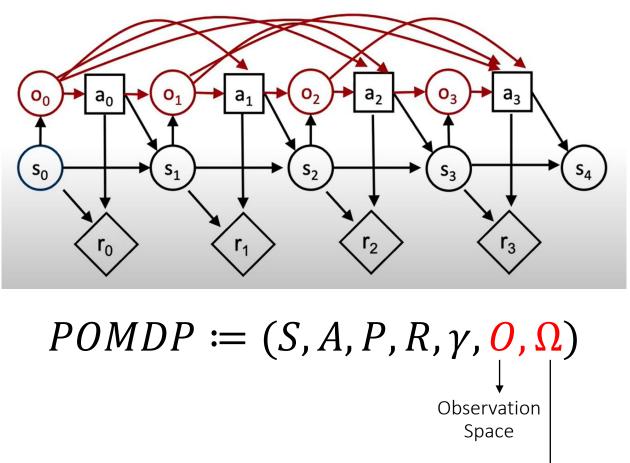
Partially Observable Markov Decision Processes



 $POMDP \coloneqq (S, A, P, R, \gamma, \mathbf{0}, \Omega)$ Observation

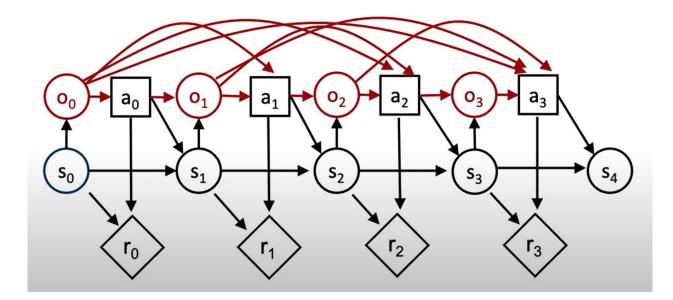
Space

Partially Observable Markov Decision Processes



◆ Observation Function

Partially Observable Markov Decision Processes



 $POMDP \coloneqq (S, A, P, R, \gamma, \mathbf{0}, \Omega)$

At each discrete time t, an agent makes observation $o \in O$, selects an action $a_t \in A$, transitions to the next state s_{t+1} with probability $\Omega(o | s_{t+1}, a_t)$, and receives the immediate reward $R(s_t, a_t, s_{t+1})$ After having taken the action a_t and observing o_t , a player (agent) needs to update its **belief** in the state the environment may (or not) be in.

After having taken the action a_t and observing o_t , a player (agent) needs to update its **belief** in the state the environment may (or not) be in.

What is belief?

Belief State and Space

After reaching s_{t+1} , the agent observes $o_t \in O$ with probability $\Omega(o_t | s_{t+1}, a_t)$. Let b be a probability distribution over the state space S. $b(s_t)$ denotes the probability that the environment is in state s_t . Given $b(s_t)$, then after taking action and observing o_t ,

$$b'(s_{t+1}) = \eta \ \Omega(o_t \mid s_{t+1}, a_t) \sum_{s \in S} P(s_{t+1} \mid s_t, a_t) \ b(s_t)$$

where

$$\eta = \frac{1}{\Pr(o_t \mid b, a_t)}$$

is a normalizing constant with

$$\Pr(o_t \mid b, a_t) = \sum_{s_{t+1} \in S} \Omega(o_t \mid s_{t+1}, a_t) \sum P(s_{t+1} \mid s_t, a_t) b(s_t)$$

What's the point?

Find a strategy (policy) $\pi: b(s_t) \in \beta \rightarrow a_t \in A(s)$ that maximize value,

$$\mathbf{v}(\mathbf{b}) = \left[\sum_{t=0}^{\infty} \gamma^t r^t\right]$$

where

- r^t is the reward earned at time t.
- γ is the discount factor.

Let's model Blackjack

• $S = \{(p,d): p, d \in \{1,2,\dots,21\}\} \cup \{Win, Lose, Draw\} \cup \{R, NR\}$

- $S = \{(p,d): p, d \in \{1,2,\dots,21\}\} \cup \{Win, Lose, Draw\} \cup \{R, NR\}$
- $A = \{Hit, Stay\}$

- $S = \{(p, d): p, d \in \{1, 2, \dots, 21\}\} \cup \{Win, Lose, Draw\} \cup \{R, NR\}$
- $A = \{Hit, Stay\}$
- $P \coloneqq S \times A \times S \rightarrow [0,1]$ where the probability of each action is $\frac{1}{13}$

- $S = \{(p,d): p, d \in \{1,2,\cdots,21\}\} \cup \{Win, Lose, Draw\} \cup \{R, NR\}$
- $A = \{Hit, Stay\}$
- $P \coloneqq S \times A \times S \rightarrow [0,1]$ where the probability of each action is $\frac{1}{13}$
- $R \in [0,1]$

- $S = \{(p,d): p, d \in \{1,2,\cdots,21\}\} \cup \{Win, Lose, Draw\} \cup \{R, NR\}$
- $A = \{Hit, Stay\}$
- $P \coloneqq S \times A \times S \rightarrow [0,1]$ where the probability of each action is $\frac{1}{13}$
- $R \in [0,1]$
- $\gamma \in [0,1]$

- $S = \{(p,d): p, d \in \{1,2,\cdots,21\}\} \cup \{Win, Lose, Draw\} \cup \{R, NR\}$
- $A = \{Hit, Stay\}$
- $P \coloneqq S \times A \times S \rightarrow [0,1]$ where the probability of each action is $\frac{1}{13}$
- $R \in [0,1]$
- $\gamma \in [0,1]$
- O := S with NR

- $S = \{(p,d): p, d \in \{1,2,\cdots,21\}\} \cup \{Win, Lose, Draw\} \cup \{R, NR\}$
- $A = \{Hit, Stay\}$
- $P \coloneqq S \times A \times S \rightarrow [0,1]$ where the probability of each action is $\frac{1}{13}$
- $R \in [0,1]$
- $\gamma \in [0,1]$
- O := S with NR
- $\Omega := s \in S$ with uniform probability

Can we use the same algorithm to solve POMDPs?

Can we use the same algorithm to solve POMDPs?

Input : MDP $M = \langle S, s_0, A, P_a(s' | s), r(s, a, s') \rangle$ **Output** : Value function V

Set V to arbitrary value function; e.g., V(s) = 0 for all s

repeat

 $\begin{array}{l} \Delta \leftarrow 0\\ \textbf{for each } \underline{s \in S} \quad b(s_t) \in \boldsymbol{\beta}\\ \underbrace{V'(s) \leftarrow \max_{a \in A(s)} \sum_{s' \in S} P_a(s' \mid s) \left[r(s, a, s') + \gamma \, V(s')\right]}_{\text{Bellman equation}}\\ \Delta \leftarrow \max(\Delta, |V'(s) - V(s)|)\\ V \leftarrow V'\\ \textbf{until } \Delta \leq \theta \end{array}$

NO

Value iteration updates cannot be carried out because uncountable number of belief states

Resources

POMDP Tutorial: <u>https://www.pomdp.org/tutorial/pomdp-solving.html</u>

Lovejoy 1991: A survey of algorithmic methods for partially observed Markov decision processes

□ Wikipedia:

https://en.wikipedia.org/wiki/Partially observable Markov de cision process