Game Design
(Session 1)

Introductions

Maze Game

[MAGE GARME

How to Represent Black and White Path

-

Random Maze Result

Level 1:

Create maze board with 0 and 1s, of size 10x10 - randomly distributed

Level 1:

Create maze board with 0 and 1s, of size 10x10 - randomly distributed

maze = np.zeros(

print_maze(maze)

Level 1:

Create maze board with 0 and 1s, of size 10x10 - randomly distributed

maze = np.zeros(

print_maze(maze)

Get your Start and End point

Get your Start and End point

randomstart = random.randint(1,

rendomend = random.randint(1,

Get your Start and End point

randomstart = random.randint(

rendomend = random.randint(1,

np.array(l®, randomstart

np.array([9, randomend])

Get your Start and End point

randomstart = random.randint(

rendomend = random.randint(1,

start = np.arrayl(, randomstart

end = np.array([9, randomend])

Get your Start and End point

randomstart = random.randint(

rendomend = random.randint(1,

start = np.arrayl(, randomstart

end = np.array([9, randomend])

t(maze)

Result

start point

Print the Maze with Start and End points

Print the Maze with Start and End points

Print the Maze with Start and End points

Print the Maze with Start and End points

m colorama import Ford

Result will look like...

How to reach the end ?

1. Capture the keys.

* A for moving left
* D for moving right

* W for moving up
S for moving down

How to reach the end ?

How to reach the end ?

How to reach the end ?

LOOPS

*Since you need to take input for every step till you reach at the end.

*Giveitatry?

Update the maze according to key Pressed?

aze (move):

f move == :
if start[1l] !=

if maze[start[0], start[1l] -
start[1] = start[1] -
maze[start[0], start[1l] +
maze[start[0], start[1]]

Write code for Right?

Update the maze according to key Pressed?

1T move == .
f start[0] !=
if maze[start[0] -
start[0] = start[0] -

maze[start[0] + 1, start[1]]

maze[start[0], start[1]] =

e Write code for Down ?

Congrats...
You have completed Random Maze Game

* Combine all the codes to get final output

Create a random 10x10 Maze Board
Get your Start and End points

Print the Board in terms of XX and __
Capture the keypress

ok~ wbdh =

Update the Maze on keypress

OUTPUT??

Did you find any problem??

Our Maze game design is A random.

* [t means Guaranteed EXIT is not confirmed.
* How to Create Guaranteed exit ??

* TRY?

Let’s think while moving...

Let’s think while moving...

walls.append([current[0] - current[1]])

r

walls.append([current[8], current[1]-11)

walls.append([current[8]+1, current| }]ﬂ

walls.append([current[8], current[1]+1])

walls

Loop 2:

Till u reach at the end, at every step you need to choose.

Loop 2:

Till u reach at the end, at every step you need to choose.

walls = adjacentcells(current)

randomcell = previous

Loop 2:

Till u reach at the end, at every step you need to choose.

walls = adjacentcells(current)

randomcell = previous

Boundary for Maze

Final Maze??

* Combine the code for Adjacent walls, loops and boundary.

e Let’s Run the code.

Final output:

Announcements

Umm, Thank You, | Guess?

See you in the next session!

Hope you had fun :)

L WOJBVIGVIA

Game Design
(Session 2)

Dragons

Introduction

Given a number of piles in which
each pile contains some numbers of
stones/coins. In each turn, a player

can choose only one pile and
remove any number of stones (at
least one) from that pile.

WHO WINS?

The player who takes away the last
stone is the winner

1 2 3 1 2 3 1 2 3

A takes 2 from 1 B takes 3 from 3

=lE -EE
1 2 3 1 2 3

B takes 1 from 2 A takes heap 1

1 2 3 1 2 3
A takes 1 from 3 B takes heap 2

A takes 1 from 2
1 2 3
B takes 1 from 2

1 2 3
A takes last coin
and wins

PHASE - 1

BUILDING A TWO-PLAYER VERSION

SAMPLE RUN -1

_

2 COINS 4 COINS

I

4) = FROM HEAP 3, REMOVE 4 COINS

ER 1: MOVE: (3,

PLAYER 2 : MOVE: (2, 4) = FROM HEAP 2 , REMOVE 4 COINS

=)

als=

\—/\—/!v

2 COINS 4 COINS 2COINS 4 COINS 2COINS OCOINS 2COINS 4COINS

PLAYER 1: MOVE: (4, 4) = FROM HEAP 4, REMOVE 4 COINS

- =
I I I I
o - — —

2COINS O COINS 2 COINS 4 COINS 2COINS OCOINS 2COINS OCOINS

PLAYER 2 : MOVE: (1, 2) = FROM HEAP 1, REMOVE 2 COINS

=)

a

PLAYER 1: MOVE: (3, 2) = FROM HEAP 3, REMOVE 2 COINS

PLAYER 1 TAKES

AWAY THE LAST

COIN AND WINS
=) THE GAME:

PLAYING AGAINST THE COMPUTER

How should the computer choose how many
coins to remove from which heap ?

What's the least complicated strategy ?

EURTHER DISCUSSION

HOW TO MAKE BETTER/STRONGER
COMPUTER OPPONENTS?

Game Design Session

Tic Tac Toe

1. Getting started with tkinter

What is GUI and tkinter?

e GUI stands for Graphical user interface. Unlike text based interfaces, GUI
uses graphical and interactive components for the user to interact with.

e tkinter stands for Tk interface. It is an easy to use and standard GUI for
Python.

Starting with tkinter

e Run the following command to ensure it is installed correctly.

python -m tkinter

e Create a blank tkinter window:

import tkinter as tk

window = tk.Tk()
window.mainloop()

Basics of tkinter

e There are 3 basic widgets in tkinter. These are Label, Button, Entry.

e Labels - It can be used to display text of various sizes and styles.

import tkinter as tk

my _window = tk.Tk()
my_label = tk.Label(
text="1 am a label widget with custom properties’,
background="black’,
foreground="white"’,
font=("Times New Roman’, 20)
)
my_label.pack()
my_window.mainloop()

Basics of tkinter

e Button: It can be used to call a command when clicked.

1 import tkinter as tk

def press button():
print('The button is pressed.’)

window = tk.Tk()

button = tk.Button(text="Click me', command=press button)
8 button.pack()

9 window.mainloop()

Basics of tkinter

e Entry: Interactive widget to get user input.

1 import tkinter as tk

3 window = tk.Tk()
4 entry = tk.Entry()

oY W

def submit():
print(entry.get())

: button = tk.Button(text='Submit®', command=submit)
10 entry.pack()

11 button.pack()

12 window.mainloop()

2. Let’'s start designing the game

Design a two player game in terminal

Design a two player game using tkinter

Designing the game

Step 1: Create the grid.

Designing the game
Step 1: Create the grid.

- N7

1 import tkinter as tk

J NJ

window = tk.Tk()
window.resizable(False, False)
window.title("Tic Tac Toe™)

7 tk.Label(window, text="Tic Tac Toe™, font=('Ariel’, 25)).pack()

Designing the game

Step 2: Create functions for reset button and play area

Designing the game

Step 2: Create functions for reset button and play area

4 def reset button(button):
5 button.configure(text="", bg="white"')

T £k ceeate M patnt (ny)
3 button = tk.Button(play_area, text="", width=10, height=5)
9 button.grid(row=x, column=y)

return button

Designing the game

Step 3: Add a Play Area

Designing the game

Step 3: Add a Play Area

14 play area = tk.Frame(window, width=300, height=300, bg="white")
5 play area.pack(pady=10, padx=10)

17 XO_buttons = []
18 for x in range(1, 4):

19 for y in range(1, 4):

20 button = create X0 point(x, y)
21 X0 buttons.append((button))

22

23 window.mainloop()

Designing the game

Step 4: Make it dynamic

Designing the game

Step 4: Make it dynamic

19 current_chr = "X"
20 X points = []
21 0_points = []

23 def set_point(x, y, button, value):
24 global current_chr

25 if not value:

26 button.configure(text=current_chr, bg="snow', fg="black')
27 value = current chr

28 if current_chr == "X":

29 X_points.append((x, y))
30 current_chr = "0"

31 else:

32 0_points.append((x, y))
current_chr = "X"

Designing the game

Step 4: Make it dynamic - where else are we suppose to add values variable?

current_chr = "X"
X points = []
0 _points = []
def set_point(x, y, button, value):
global current_chr
if not value:
button.configure(text=current_chr, bg="snow', fg="black")
value = current chr

A A AP SIS NI SIS T P

if current_chr == "X":
X_points.append((x, y))
current_chr = "0"

else:

0_points.append((x, y))
current_chr = "X"

Designing the game

Step 5: Check win function

Designing the game

Step 5: Check win function

for possibility in winning_possibilities:

if all(point in X_points for point in possibility):
print("X won!")
reset_points()
return

elif all(point in O_points for point in possibility):
print("0 won!")
reset_points()
return

if len(X_points) + len(0O_points) == 9:
print("Draw!")

reset_points()

Designing the game

Step 6: Reset points

Designing the game

Step 6: Reset points

def reset_points():

for button, value in XO_buttons:

reset_button(button, value)
X_points.clear()
0_points.clear()

Step 7: Integrate

DONE?

3. Variations of Tic Tac Toe

5 x 5 tic tac toe

4. Winning Strategy

But imp concepts before that

BN e

- 8T

def fibonacci(n):
if n <= 1:
return n
else:
return(fibonacci(n-1) + fibonacci(n-2))

LA Al

G fA3E gL
S
) £
]
-

m m MMF [, A= 2
o 5

- , |

Ion. ‘

Y -
“nderstan re | I»_ |
\“ :

1 LA

Jr Uy 2% M,

Depth First Search

P NEE"Ii 1060

-
,

\ -)

\

.
fsrmwex tedd

Depth First Search

Umm, Thank You, | Guess?

See you in the next session!

Hope you had fun :)

L WOJBVIGVIA

Game Design
(Session 4)

N & B =
Y & & &8 = ® BN W

-:.:.Iill-lll)lil

About 12C (Inter-Integrated Circuit)

A communication protocol used to communicate with each other using just two wires: a
serial data line (SDA) and a serial clock line (SCL), connected in a bus configuration.
Design involves a master device, which initiates and controls the communication, and
slave devices, which respond to commands and provide data.

vdd

i
%QM A

12C Controller Peripheral 1 Peripheral 2 Peripheral 3
(ADC) (LCD) (Sensor)

About I2C Adapter

Using 12C Adapter, we can use this protocol in our circuit.

Due to the Master-Slave relationship and the bus
configuration, the process of connecting and
communicating with multiple devices is simplified by using a .
minimal number of wires. P

It also makes it easier if in future we want to add more
devices to the circuit.

I2C ADAPTER
Hence, in the case of the LCD, we will use this more often.

2C COMMUNICATION PROTOCOL

http://www.youtube.com/watch?v=pbqk5yqbfuw&t=33

(DOIT ESP32 DEVKIT VI gl

GPI023 COPI

15 ENABLE
ETR wrooo

-

=
n -

GPI022 SCL

-
>

GPIO1 X

GPI021

ESP-WROOM-32

e 11 C E @

TR <: [R]) 205 - o0uste

FCCOD:2ACT2-ESPWROOM32

RX0 TX0 D22 D23

12

GPI018

D18 D19 D21

RTCIO8 GPI033 GPIO18

RTCIOS Al8 GPI025 BEEEEEEEEE GPIOS

RTCIO7 Al8 GPI026 GPI017

RTCIO17 A17 GPI027 GPIO16

D4 RX2 TX2 D5

RTCIO1E Ale GPI014 GPIO4

RTCIOLS

=
a

AlS GPI012 GPIO2

D2

BBi

RTCIO14 T4 Al4 GPI013

D15

HOOOOONOOOOOOO6 O

GPI01S

GND GND

| =
u!nﬂn!ﬂa!!.ala

3V3 GND

3.3v

« GPIO pins 34, 35, 36 and 39 are input only.
= TX0 and RXO (Serial@) are used for serial programming.

PHYSICAL PIN POSITIVE SUPPLY DAC OUTPUTS
k « TX2 and RX2 can be accessed as Serial2.
CONTROL PINS GROUND SUPPLY TOUCH INPUTS UART PINS « Default SPI is VSPI. Both VSPI and HSPI pins can be set to any GPIO pins.

« All GPIO pins support PWM and interrupts.

- Some BPID pins are used for interfacing flash memory and thus are nat shown. L Loet 0

https://rb.gy/vkd21

1 #include <Wire.h>

2 #include <uU8g2lib.h>

3

4 #define SCREEN WIDTH 128

5 #define SCREEN HEIGHT 64

6

7 U8G2 SH1106 128X64 NONAME F HW I2C u8g2(U8G2 RO, USX8 PIN NONE);
8

9 v void setup(void) {

10 ug8g2.begin();

11}

12

13 v void loop(void) {

14 ug8g2.firstPage();

15 v | do {

16 ug8g2.setFont(ug8g2 font ncenBi4 tr);
17 u8g2.drawstr(3, 35, "Hello World!");
18 } while (u8g2.nextPage());

19 }

What are potentiometers?

- "A potentiometer is a three-terminal resistor with a sliding or rotating contact that
forms an adjustable voltage divider. " - Wikipedia

The Chad Fender Pure Vintage 250K

The Virgin standard Pot Split Shaft Potentiometer

But what are potentiometers actually !?
(I am bored of this theory)

« In short: Most Common Variable Resistor (more in electronics class)
« The three terminals: The end two terminals have fixed resistance
o The terminal in between (in relation to other) provide variable resistance

- 1OJC)

100 kQ

0.00 Q

[t J

0e®

https://docs.google.com/file/d/1cdvGLkBcyhaG67ArvmzW7Ntr0r5teBbc/preview

Make circuit using OLED,
Potentiometer and ESP32

ts

-
]
cE S
2 S Y
£ a0 U
O . 4 O
% L c c
omm B.ml %
5 to ¢
- S C =)
i @ g
omm CcC wn cC
| o C =
O O)
W.s Vv n ° 9
L U C o .=
o £ c w U5
weg OofF 25
“.ﬂ 0 T — =
“n
o — N
= VU © o

Global Variables

Includes paddle positions, ball
position and speed, game score,
and game over flag

Declared to store various game
parameters and states

Setup Function

e Pin mode is set for the potentiometer

EE==2r input
H I F 77 . e
2 e The display is initialized and
configured

e Serial communication is initialized for
printing the score

e The welcome message is displayed
on the OLED screen

e A delay of 2 seconds is added before
starting the game

e The random number generator is
seeded with an analog reading

>

Loop Function

If the game is over, a If there is input Otherwise, the function
game over message is available from the serial returns and stops
displayed on the screen monitor and it is 'y', the updating the game

game is reset

Potentiometer Input

N
NN
S
NN

N
SN

N

/ 01 Thevalueis mapped to the screen height
= and the resulting value is constrained to
= 4 tay within th bound

L stay within the screen bounds

=
=======;__:;§§\\\

= The potentiometer value is read to
="\ 02 PO . |
=SSN determine the position of the first paddle
N (paddlel1Y’)

itioning

Second Paddle Pos

It adjusts its position to match the

vertical movement of the ball

n
< >
o wn
> =

©
Mb
==
O o
2 o
—)
UV o
5 2

)
2 ©
o
dr
nd
Oe
v S
o O
=
Q wn
O
= Q

c
o

=
n
o
aQ

»>

Ball Movement

e The ball's position is
updated based on its current
position and speed

N — -==—.’a“ - 7
e W A
NS — —
N
9/

N s ~
e = —
===
"

If the ball hits the top or
bottom edge of the screen,
the ball's Y direction is
reversed

If the ball hits the first
paddle (‘paddle1Y’), the
ball's X direction is
reversed, the score is
incremented, and the
score is printed to the
serial monitor

Collision Detection

Various game scenarios
are handled through
collision detection

If the ball hits the left or
right edge of the screen,
the ball speed is reset and
the ball is moved back to
the left or right edge

If the ball hits the second
paddle (‘paddle2Y’), the
ball's X direction is
reversed

Additional Functions

N
SN

=

NN

N
S

X
NN

N
N

N

(1 resetBall() - Resets the ball's position and speed

7 .
to the center of the screen and assigns random

777 initial speeds for X and Y directions
e
S
-—““\\Qi\\
--EE:S\:\\:\\\-

=\ 02 ‘displayWelcomeMessage() - Displays the
= SN\ welcome message on the OLED screen
\\%\ \

>

HINT - Functions to Google

e setPowerSave e Serial.read()
e clearBuffer e randomSeed
e clearBuffer e analogRead
e sendBuffer e constrain

e setCursor e map

° e abs

rawBox

Umm, Thank You, | Guess?

See you in the next session!

Hope you had fun :)

L WOJBVIGVIA

Game Design
(Session 5)

GUI in Python

* Pygame is a cross-platform set of Python modules
which is used to create video games.

* Pygame is suitable to create applications that can be
wrapped in a standalone executable

* It consists of computer graphics and sound libraries
designed to be used with the Python programming
language.

* Installation through Pycharm: File > Settings >
Project Interpreter > +

» Search pygame and click on install package
button

Starting with pygame: Game window

pygame
pygame.init()

width = 800

height = 600

screen = pygame.display.set_mode((width, height))
background_color = (0,139,0)

game_over =
game_over:

event pygame.event.get():
event.type == pygame.QUIT:
game_over =

screen.fill(background_color)

pygame.display.update()

pygame.quit()

Starting with pygame: Adding objects

\:1', pygame window

food_color = (139,0,0)
snake_color=(0,0,255)
snake_height = 30
snake width = 30

game_over =
game_over:
event pygame.event.get():
event.type == pygame.QUIT:
game_over =

screen.fill(background_color)

pygame.draw.circle(screen, food_color, (4060, 300), 10)
pygame.draw.rect(screen, snake_color, [500,200, snake width, snake_height])

» We will first define a game flow
with functions as black boxes

» Later these functions will be
defined according to our use

Empty list
snake: [(_,_), (Lo _)o(0)i (L))]

11 Starting position: snake_mouth = [200,150]

add snake_mouth to 'snake’ list

[1]Decide a random location for food

Left

Check Game over Get snake directionh‘ Right
conditions a user input Up

Down

Add new mouth location
and remove previous tail
location

Increase Snake Length
from back

—

Draw food at initial
random location

Draw snake at
latest snake list

Functions

 In the flow chart, we used four user
defined functions
1. Decide random location for food

f add_food():
food x =random.randint(@,width)
food y =random.randint(0,height)

[food x,food y]

food posn = add food()

 In the flow chart, we used four user
defined functions

Functions

2. Update snake list as a result of movement

f move(direction,snake):
updated mouth = move cell(direction,snake[@])
new_ snake=[]
new_snake.append(updated _mouth)
i in range(len(snake)-1):
new_snake.append(snake[i])
1 new_snake

* In the flow chart, we used four user

Functions defined functions

3. Check if food is present at mouth location

is_food_present(snake,food_posn):
snake_mouth = snake[@]
snake_mouth_center = [snake_mouth[@],snake_mouth[1]]
distance = ((food_posn[@]-snake_mouth_center[8])**2 + (food_posn[1]-snake_mouth_center[1])**2)**@.5
print(snake_mouth)
distance<12:

* In the flow chart, we used four user

Functions defined functions

4. Update snake list as a result of eating food

update_food(snake,direction):
last_block = snake[-1]
direction == 1:
new_block = [last_block[@] + snake width, last block[1]]
if direction == 2:
new_block = [last_block[®] - snake width, last_block[1]]
f direction == 3:
new_block = [last_block[®], last_block[1] + snake_height]
direction == 4:
new_block = [last_block[©], last_block[1] - snake_height]
snake.append(new_block)

snake

» Use the flowchart and the functions to
write on your own!

While loop

While loop

t game_over:

display.fill(background color)

event in pygame.event.get():
- event.type==pygame.QUIT:
game_over=Tr
event.type == pygame.KEYDOWN:
if event.key == pygame.K_LEFT:
direction=1
if event.key == pygame.K_RIGHT:
direction=2
- event.key == pygame.K_UP:
direction=3
if event.key == pygame.K_DOWN:
direction=4

if(is_food):
print(snake)

pygame.display.update()

fpsClock.tick(FPS)

