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Abstract: This paper provides a comprehensive survey of the Fibonacci sequence, explor-
ing its fundamental properties, various mathematical applications, and its extensions into related
sequences. We begin by examining the classical Fibonacci sequence, defined by the recurrence
relation F (n) = F (n−1)+F (n−2) with initial conditions F (0) = 0 and F (1) = 1. The sequence’s
inherent characteristics, such as its mathematical identities, its connection to the golden ratio,
Pascal’s triangle, and its combinatorial interpretations, are thoroughly analyzed. Additionally, we
investigate its extension to negative indices, known as negafibonacci numbers, and its generalization
in matrix form. Through this survey, we aim to highlight the versatility and profound implications
of Fibonacci-like sequences in various fields of mathematics, science, and art, showcasing their
enduring significance and diverse applications.1

1The authors completed this exposition as part of the summer 2020 PROMYS program. We thank the PROMYS
program for their support and for creating such a stimulating work environment. We also thank Professor David
Fried and Arpoitri Ghosal for their helpful feedback. The project contains no references because it was undertaken
without consulting any online resources; all results were developed from scratch by the authors.
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1 Introduction
The first few Fibonacci numbers are

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...

where each term in the sequence (after the second one) is the sum of the preceding two terms.
Mathematically,

F1 = F2 = 1

Fn+1 = Fn + Fn−1 ∀ n > 2

The Lucas sequence has the same recursive sequence relationship as the Fibonacci sequence. Math-
ematically,

L1 = 1;L2 = 3

Ln+1 = Ln + Ln−1 ∀ n > 2

The first few Lucas numbers are

1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, ...

We defined the General Fibonacci sequence (G sequence) as the sequence which has the same
recursive sequence relationship as the Fibonacci sequence, where each term in the sequence (after
the second one) is the sum of the preceding two terms. Mathematically,

A1 = x;A2 = y

An+1 = An +An−1 ∀ n > 2

The first few G numbers can be represented as

x, y, x+ y, x+ 2y, 2x+ 3y, 3x+ 5y, 5x+ 8y, 8x+ 13y, ...

2 Sum Identities

2.1 Sum Identities for Fibonacci Numbers
2.1.1 Sum of first n terms

n∑
i=1

Fi = Fn+2 − 1

Proof. Base case n = 1: If n = 1, the left hand side is F1 = 1 and the right hand side is
F1+2 − 1 = 2− 1 = 1. So, the theorem holds when n = 1.
Inductive hypothesis: Suppose the theorem holds for all values of n up to some k, k ≥ 1.
Inductive step: Let n = k + 1. Then our left side is

k+1∑
i=1

Fi = Fk+1 +

k∑
i=1

Fi

= Fk+1 + Fk+2 − 1, (by our inductive hypothesis)
= Fk+3 − 1, (∵ Fk+1 + Fk+2 = Fk+3)

which is our right side. So, the theorem holds for n = k + 1. By the principle of mathematical
induction, the theorem holds for all n ∈ N.

2.1.2 Sum of first n even terms

Theorem 2.1.
n∑

i=0

F2i = F2n+1 − 1
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Proof. Base case n = 1: If n = 1, the left hand side is F2(1) = F2 = 1 and the right hand side is
F2(1)+1 − 1 = F3 − 1 = 2− 1 = 1. So, the theorem holds when n = 1.
Inductive hypothesis: Suppose the theorem holds for all values of n up to some k, k ≥ 1.
Inductive step: Let n = k + 1. Then our left side is

k+1∑
i=1

F2i = F2(k+1) +

k∑
i=1

F2i

= F2k+2 + F2k+1 − 1, (by our inductive hypothesis)
= F2k+3 − 1, (∵ F2k+1 + F2k+2 = F2k+3 )
= F2(k+2)+1 − 1

which is our right side. So, the theorem holds for n = k + 1. By the principle of mathematical
induction, the theorem holds for all n ∈ N.

2.1.3 Sum of first n odd terms

Theorem 2.2.
n∑

i=0

F2i+1 = F2n+2

Proof. Base case n = 0: If n = 0, the left hand side is F2(0)+1 = F1 = 1 and the right hand side is
F2(0)+2 = F2 = 1. So, the theorem holds when n = 0.
Inductive hypothesis: Suppose the theorem holds for all values of n up to some k, k ≥ 1.
Inductive step: Let n = k + 1. Then our left side is

k+1∑
i=0

F2i+1 = F2(k+1)+1 +

k∑
i=0

F2i+1

= F2k+3 + F2k+2, (by our inductive hypothesis)
= F2k+4, (∵ F2k+3 + F2k+2 =F2k+4 )
= F2(k+2)

which is our right side. So, the theorem holds for n = k + 1. By the principle of mathematical
induction, the theorem holds for all n ∈ N.

2.1.4 Sum of square of first n terms

Theorem 2.3.
n∑

i=1

(Fi)
2 = Fn × Fn+1
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The dimensions of the rectangle formed by putting all of the squares together are Fn and (Fn +
Fn−1) = Fn+1. So the area, i.e. the sum of all the squares till n is Fn × Fn+1

Proof. Base case n = 1: If n = 1, the left hand side is F 2
1 = 1 and the right hand side is

F1 × F1+1 = F1 × F2 = 1× 1 = 1. So, the theorem holds when n = 1.
Inductive hypothesis: Assume the theorem holds true for all values of n up to some k, k ≥ 1.
Inductive step: Let n = k + 1. Then our left side is

k+1∑
i=1

(Fi)
2 =

k∑
i=1

(Fi)
2 + F 2

k+1

= FkFk+1 + F 2
k+1

= Fk+1(Fk + Fk+1)

= Fk+1Fk+2

which is our right hand side. So, the theorem holds true for n = k + 1. By the principle of
mathematical induction, the theorem holds for all n ∈ N.

2.1.5 Sum of cubes of first n terms

Theorem 2.4.

Sn =

n∑
i=1

F 3
i =

3

2
F 2
nFn+1 − F 3

n − 1

2
F 3
n−1 +

1

2

Pictorial Idea:
The volume of the above figure could be generalised as:

n∑
i=1

F 3
i = F 2

nFn+1 − (FnFn−1Fn−2)− (Fn−1Fn−2Fn−3)− ...− (F3F2F1) (1)

Now, we know that

Fn = Fn−1 + Fn−2

=⇒Fn−1 = Fn − Fn−2

Cubing both the sides,

(Fn−1)
3 = (Fn − Fn−2)

3

= (Fn)
3 − 3FnFn−2(Fn − Fn−2)− (Fn−2)

3
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= (Fn)
3 − 3FnFn−1Fn−2 − (Fn−2)

3

=⇒FnFn−1Fn−2 =
1

3
(F 3

n − F 3
n−1 − F 3

n−2)

Substituting the above expression in equation (1),

Sn = F 2
nFn+1 − [(FnFn−1Fn−2) + (Fn−1Fn−2Fn−3) + ...+ (F3F2F1)]

= F 2
nFn+1 −

1

3
[F 3

n − F 3
n−1 − F 3

n−2 + F 3
n−1 − F 3

n−2 − F 3
n−3 + ...+ F 3

3 − F 3
2 − F 3

1 ]

= F 2
nFn+1 −

1

3
[F 3

n − (F 3
n−2 + F 3

n−3 + F 3
n−3 + ...+ 2F 3

2 + F 3
1 )]

=⇒ 3Sn + F 3
n + F 3

n−1 = 3F 2
nFn+1 − F 3

n + Sn + 1

=⇒ 2Sn = 3F 2
nFn+1 − 2F 3

n − F 3
n−1 + 1

=⇒ Sn =
3

2
F 2
nFn+1 − F 3

n − 1

2
F 3
n−1 +

1

2

Proof. Base case n = 1: on LHS we have F 3
1 = 1. On RHS we have 3

2F
2
1F2 − F 3

1 − 1
2F

3
0 + 1

2 =
3
2 − 1− 0 + 1

2 = 1. So, the theorem holds true for n = 1.

Assume it is true for n = k:

k∑
i=1

F 3
i =

3

2
F 2
kFk+1 − F 3

k − 1

2
F 3
k−1 +

1

2

k+1∑
i=1

F 3
i =

k∑
i=1

F 3
i + F 3

k+1

=
3

2
F 2
kFk+1 − F 3

k − 1

2
F 3
k−1 +

1

2
+ F 3

k+1

Expanding F 3
k−1:

=
3

2
F 2
kFk+1 − F 3

k + [−1

2
F 3
k+1 +

3

2
F 2
k+1Fk − 3

2
F 2
kFk+1 +

1

2
F 3
k ] +

1

2
+ F 3

k+1

= −1

2
F 3
k +

3

2
F 2
k+1Fk +

1

2
+

1

2
F 3
k+1

Writing Fk as Fk+2 − Fk+1 in the second term:

= −1

2
F 3
k +

3

2
F 2
k+1(Fk+2 − Fk+1) +

1

2
+

1

2
F 3
k+1

= −1

2
F 3
k +

3

2
F 2
k+1Fk+2 −

3

2
F 3
k+1 +

1

2
+

1

2
F 3
k+1

= −1

2
F 3
k +

3

2
F 2
k+1Fk+2 − F 3

k+1 +
1

2

=
3

2
F 2
k+1Fk+2 − F 3

k+1 −
1

2
F 3
k +

1

2

Which is the RHS, so, the theorem holds true for n = k + 1. By the principle of mathematical
induction, the theorem holds for all n ∈ N.

2.1.6 Sum of Sums∑n
k=1

∑k
i=1 Fi can be written in two different ways as

n∑
k=1

(Fk+2 − 1) =

n+2∑
i=1

Fi − 2− n = Fn+4 − 3− n

and
n∑

i=1

(n− i+ 1)Fi = (n+ 1)

n∑
i=1

Fi −
n∑

i=1

iFi

= (n+ 1)(Fn+2 − 1)−
n∑

i=1

iFi
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Equating both gives

Fn+4 − 3− n = nFn+2 + Fn+2 − n− 1−
n∑

i=1

iFi

n∑
i=1

(iFi) = (n+ 1)Fn+2 − Fn+4 + 2

2.2 Sum Identities for Lucas Numbers
2.2.1 Sum of first n terms

Theorem 2.5.
n∑

i=1

Li = Ln+2 − 3

Proof. Base case n = 1: If n = 1, the left hand side is L1 = 1 and the right hand side is
L1+2 − 3 = 4− 3 = 1. So, the theorem holds when n = 1.
Inductive hypothesis: Suppose the theorem holds for all values of n up to some k, k ≥ 1.
Inductive step: Let n = k + 1. Then our left side is

k+1∑
i=1

Li = Lk+1 +

k∑
i=1

Li

= Lk+1 + Lk+2 − 3, (by our inductive hypothesis)
= Lk+3 − 3, (∵ Lk+1 + Lk+2 = Lk+3 )

which is our right side. So, the theorem holds for n = k + 1. By the principle of mathematical
induction, the theorem holds for all n ∈ N.

2.2.2 Sum of first n even terms

Theorem 2.6.
n∑

i=1

L2i = L2n+1 − 1

Proof. Base case n = 1: If n = 1, the left hand side is L2(1) = L2 = 3 and the right hand side is
L2(1)+1 − 1 = L3 − 1 = 4− 1 = 3. So, the theorem holds when n = 1.
Inductive hypothesis: Suppose the theorem holds for all values of n up to some k, k ≥ 1.
Inductive step: Let n = k + 1. Then our left side is

k+1∑
i=1

L2i = L2(k+1) +

k∑
i=1

L2i

= L2k+2 + L2k+1 − 1, (by our inductive hypothesis)
= L2k+3 − 1, (∵ L2k+1 + L2k+2 = L2k+3 )
= L2(k+2)+1 − 1

which is our right side. So, the theorem holds for n = k + 1. By the principle of mathematical
induction, the theorem holds for all n ∈ N.

2.2.3 Sum of first n odd terms

Theorem 2.7.
n∑

i=0

L2i+1 = L2n+2 − 2

Proof. Base case n = 0: If n = 0, the left hand side is L2(0)+1 = L1 = 1 and the right hand side is
L2(0)+2 − 2 = L2 − 2 = 3− 2 = 1. So, the theorem holds when n = 0.
Inductive hypothesis: Suppose the theorem holds for all values of n up to some k, k ≥ 1.
Inductive step: Let n = k + 1. Then our left side is

k+1∑
i=0

L2i+1 = L2(k+1)+1 +

k∑
i=0

L2i+1
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= L2k+3 + L2k+2 − 2, (by our inductive hypothesis)
= L2k+4 − 2, (∵ L2k+3 + L2k+2 =L2k+4 )
= L2(k+2) − 2

which is our right side. So, the theorem holds for n = k + 1. By the principle of mathematical
induction, the theorem holds for all n ∈ N.

2.2.4 Sum of squares of first n terms

Theorem 2.8.
n∑

i=0

(Li)
2 = Ln × Ln+1 − 2

2.3 Sum Identities for G Numbers
2.3.1 Sum of first n terms

Theorem 2.9.
n∑

i=1

Ai = An+2 − y

Proof. Base case n = 1: If n = 1, the left hand side is A1 = x and the right hand side is
A1+2 − y = x+ y − y = x. So, the theorem holds when n = 1.
Inductive hypothesis: Suppose the theorem holds for all values of n up to some k, k ≥ 1.
Inductive step: Let n = k + 1. Then our left side is

k+1∑
i=1

Ai = Ak+1 +

k∑
i=1

Ai

= Ak+1 +Ak+2 − y, (by our inductive hypothesis)
= Ak+3 − y, (∵ Ak+1 +Ak+2 = Ak+3 )

which is our right side. So, the theorem holds for n = k + 1. By the principle of mathematical
induction, the theorem holds for all n ∈ N.

2.3.2 Sum of first n even terms

Theorem 2.10.
n∑

i=0

A2i = A2n+1 − x

Proof. Base case n = 1: If n = 1, the left hand side is A2(1) = A2 = y and the right hand side is
A2(1)+1 − x = A3 − x = x+ y − x = y. So, the theorem holds when n = 1.
Inductive hypothesis: Suppose the theorem holds for all values of n up to some k, k ≥ 1.
Inductive step: Let n = k + 1. Then our left side is

k+1∑
i=1

A2i = A2(k+1) +

k∑
i=1

A2i

= A2k+2 +A2k+1 − x, (by our inductive hypothesis)
= A2k+3 − x, (∵ A2k+1 +A2k+2 = A2k+3 )
= A2(k+2)+1 − x

which is our right side. So, the theorem holds for n = k + 1. By the principle of mathematical
induction, the theorem holds for all n ∈ N.

2.3.3 Sum of first n odd terms

Theorem 2.11.
n∑

i=0

A2i+1 = A2n+2 + x− y

8



Proof. Base case n = 0: If n = 0, the left hand side is A2(0)+1 = A1 = x and the right hand side
is A2(0)+2 + x− y = A2 + x− y = y + x− y = x. So, the theorem holds when n = 0.
Inductive hypothesis: Suppose the theorem holds for all values of n up to some k, k ≥ 1.
Inductive step: Let n = k + 1. Then our left side is

k+1∑
i=0

A2i+1 = A2(k+1)+1 +

k∑
i=0

A2i+1

= A2k+3 +A2k+2 + x− y, (by our inductive hypothesis)
= A2k+4 + x− y, (∵ A2k+3 +A2k+2 = A2k+4 )
= A2(k+2) + x− y

which is our right side. So, the theorem holds for n = k + 1. By the principle of mathematical
induction, the theorem holds for all n ∈ N.

2.3.4 Sum of squares of first n terms
n∑

i=0

(Ai)
2 = An ×An+1 − xy + x2

The first two terms may not necessarily make a rectangle; there may be space left (shaded region
below):

The dimensions of the entire rectangle will still be An×An+1, but we will also have to subtract
the area of the shaded region. The area of the shaded region will be:

A1 × (A2 −A1)

= x(y − x)

Now we have the area of the entire rectangle minus the area of the space left:

n∑
i=1

A2
i = An ×An+1 − x(y − x)

This can be rewritten as:
n∑

i=1

A2
i = An ×An+1 − xy + x2

We can think of this as drawing the rectangle without the first term x, and then adding x2

separately. This takes care of the case where x > y. (−xy) is subtracting the area of the shaded
region and (+x2) is adding back the first term which we had omitted in the drawing:
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Proof. Base case n = 1: If n = 1, the left hand side is A2
1 and the right hand side is A1A1+1 −

A1A2 +A2
1 = A1(A2 −A2 +A1) = A2

1. So, the theorem holds when n = 1.
Inductive hypothesis: Suppose the theorem holds true for all values of n up to some k, k ≥ 1.
Inductive step: Let n = k + 1. Then our left side is

k+1∑
i=1

(Ai)
2 =

k∑
i=1

(Ai)
2 +A2

k+1

= AkAk+1 +A2
k+1 +A1A2 +A2

1

= Ak+1(Ak +Ak+1) +A1A2 +A2
1

= Ak+1Ak+2 +A1A2 +A2
1

which is our right hand side. So, the theorem holds true for n = k + 1. By the principle of
mathematical induction, the theorem holds for all n ∈ N.

2.3.5 Relationship to Fibonacci numbers

An = (Fn−2)x+ (Fn−1)y, n ≥ 3

Proof. Base case n = 3: If n = 3, the left hand side is A3 = x + y and the right hand side is
(F3−2)x+ (F3−1)y = (F1)x+ (F2)y = x+ y.
So, the theorem holds when n = 3.
Inductive hypothesis: Suppose the theorem holds for all values of n up to some k, k ≥ 1.
Inductive step: Let n = k + 1. Then our left side is

Ak+1 = Ak +Ak−1

From our inductive hypothesis, we have
Ak+1 = (Fk−2)x+ (Fk−1)y + (Fk−3)x+ (Fk−2)y

= (Fk−2 + Fk−3)x+ (Fk−1 + Fk−2)y

= (Fk−1)x+ (Fk)y

= (F(k+1)−2)x+ (F(k + 1)− 1)y

which is our right side. So, the theorem holds for n = k + 1. By the principle of mathematical
induction, the theorem holds for all n ≥ 3.
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3 General Fibonacci Sequence and the Golden Ratio

Fn Fn−1 Fn/Fn−1

1 1 1
2 1 2
3 2 1.5
8 5 1.6
13 8 1.625
21 13 1.615384615
34 21 1.619047619
55 34 1.617647059
89 55 1.6181818182

We observe that as the Fibonacci numbers get larger, the ratio of Fn/Fn−1 gets closer and
closer to the Golden Ratio (ϕ ≈ 1.6180). Mathematically,

lim
n→∞

Fn

Fn−1
= ϕ

Now, let’s check if the same pattern follows for the Lucas sequence.

Ln Ln−1 Ln/Ln−1

3 1 3
4 3 1.33334
7 4 1.75
11 7 1.57142858
18 11 1.63636363
29 18 1.61111111
47 29 1.620689656
76 47 1.617021277
123 76 1.618421053
199 123 1.617886179
322 199 1.618090452

We observe that as the Lucas numbers get larger, the ratio of Ln/Ln−1 gets closer and closer
to the Golden Ratio (ϕ ≈ 1.6180). Mathematically,

lim
n→∞

Ln

Ln−1
= ϕ

We can now generalize our observations in the form of the theorem stated below:

Theorem 3.1.

lim
n→∞

An

An−1
= ϕ , ∀ G - sequences

Proof.

lim
n→∞

An+1

An
= lim

n→∞

An

An−1
= (say) x ...(1)

lim
n→∞

An+1

An
= lim

n→∞

An +An−1

An

= lim
n→∞

(1 +
An

An−1
)

= 1 +
1

limn→∞
An−1

An

...(2)

From equation (1) and equation (2), we get

x = 1 +
1

x
=⇒x2 − x− 1 = 0

Solving the quadratic equation for x, we get
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x =
1±

√
5

2
As all An are positive,

x =
1 +

√
5

2

x = lim
n→∞

An

An−1
= ϕ

4 Fibonacci and Pascal’s Triangle
Pascal’s Triangle is formed by starting with an apex of 1. Every number below in the triangle is
the sum of the two numbers diagonally above it to the left and the right, with positions outside
the triangle counting as zero.
It is interesting to note that the numbers on diagonals of the triangle add to the Fibonacci se-
quence, as shown below.

4.1 Pascal’s triangle in Binomial form

(
0
0

)
(
1
0

) (
1
1

)
(
2
0

) (
2
1

) (
2
2

)
(
3
0

) (
3
1

) (
3
2

) (
3
3

)
(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)
(
5
0

) (
5
1

) (
5
2

) (
5
3

) (
5
4

) (
5
5

)
(
6
0

) (
6
1

) (
6
2

) (
6
3

) (
6
4

) (
6
5

) (
6
6

)
Fibonacci numbers as sums of diagonals:

Fn =

⌊n+1
2 ⌋∑

i=1

(
n− i

i− 1

)
The ith term in the sequence of terms that add to Fn:

Fni =

(
n− i

i− 1

)
=

(n− 1)!

(i− 1)!(n− 2i+ 1)!
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By the pattern in the Pascals triangle, Fni is formed by adding F(n−1)i and F(n−2)(i−1)
.

F(n−1)i + F(n−2)(i−1)

=

(
n− i− 1

i− 1

)
+

(
n− i− 1

i− 2

)

=
(n− i− 1)!

(i− 1)!(n− 2i)!
+

(n− i− 1)!

(i− 2)!(n− 2i+ 1)!

=
(n− i− 1)!(n− 2i+ 1)

(i− 1)!(n− 2i+ 1)!
+

(n− i− 1)!(i− 1)

(i− 1)!(n− 2i+ 1)!

=
(n− i− 1)!(n− 2i+ 1 + i− 1)

(i− 1)!(n− 2i+ 1)!

=
(n− i− 1)!(n− i)

(i− 1)!(n− 2i+ 1)!

=
(n− i)!

(i− 1)!(n− 2i+ 1)!

=

(
n− i

i− 1

)

= Fni

Expanded forms of the summation of Fn, Fn−1 and Fn−2:

Fn =

(
n− 1

0

)
+

(
n− 2

1

)
+

(
n− 3

2

)
+ ...+

(
n− ⌊n+1

2 ⌋
⌊n+1

2 ⌋ − 1

)

Fn−1 =

(
n− 2

0

)
+

(
n− 3

1

)
+

(
n− 4

2

)
+ ...+

(
n− ⌊n

2 ⌋ − 1

⌊n
2 ⌋ − 1

)

Fn−2 =

(
n− 3

0

)
+

(
n− 4

1

)
+

(
n− 5

2

)
+ ...+

(
n− ⌊n−1

2 ⌋ − 2

⌊n−1
2 ⌋ − 1

)

F(n−1)1 = Fn1
, all subsequent Fni

are formed by adding F(n−1)i F(n−2)i−1

Case 1: n is Even
Fn and Fn−1 will have the same number of terms. The last two terms of Fn−2 and Fn−1 will

add to the last term of Fn.

Case 2: n is Odd
Fn−1 and Fn−2 will have the same number of terms. All terms add as before, but the last term

of Fn−2 is equal to the last term of Fn:

Fn
(⌊n+1

2
⌋

F(n−2)
(⌊n+1

2
⌋−1)

(
n− ⌊n−1

2 ⌋ − 2

⌊n−1
2 ⌋ − 1

) (
n− ⌊n+1

2 ⌋
⌊n+1

2 ⌋ − 1

)
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(
n− (n2 − 1

2 )− 2
n
2 − 1

2 − 1

) (
n− (n2 + 1

2 )
n
2 + 1

2 − 1

)
(n

2 − 1.5
n
2 − 1.5

) (n
2 − 0.5
n
2 − 0.5

)

=⇒Fn⌊n+1
2

⌋
= F(n−2)

(⌊n+1
2

⌋−1)

4.2 Pascal and Fibonacci recursion with starting x, y
We modify the Pascal’s Triangle by starting with an apex of x. And the second row being y and x.
Every number below in the triangle is the sum of the two numbers diagonally above it to the left
and the right, with positions outside the triangle counting as zero just like the Pascal’s Triangle.

x
y x

y x+y x
y x+2y 2x+y x

y x+3y 3x+3y 3x+y x
y x+4y 4x+6y 6x+4y 4x+y x

y x+5y 5x+10y 10x+10y 10x+5y 5x+y x

Observing the coefficients of x and y in this new triangle, we realize they are adjacent pairs of
the Pascal’s Triangle of the previous row.
Another way of looking at this is by splitting the x and the y terms, that is removing all the x’s
we just get the Pascal’s Triangle times y.
It is interesting to note that from these modifications, the numbers on diagonals of this triangle
sum up to the General Fibonacci numbers = Gn

5 Combinatorial Interpretation of Fibonacci
Numbers

n− 1 Compositions No. of compositions Fn

1 1 1 1

2 1+1 , 2 2 2

3 1+1+1 , 1+2 , 2+1 3 3

4 1+1+1+1 , 1+1+2 , 1+2+1 , 2+1+1 , 2+2 5 5

5 1+1+1+1+1, 2+1+1+1, 1+2+1+1, 1+1+2+1,
1+1+1+2, 2+2+1, 2+1+2, 1+2+2

8 8

From the above table, it is interesting to note that the number of compositions of n− 1 with parts
1 or 2 is equal to the nth Fibonacci Number. Mathematically, this can be stated as the theorem
below :

Theorem 5.1. The Fibonacci number Fn is the number of compositions of n− 1 into parts equal
to 1 or 2.

Proof. 1: Let k be the number of twos in a (1,2)-composition of n− 1
=⇒ The number of ones in this composition = n− 1− 2k

Number of (1,2)-compositions of n− 1 for a given k =

(
Total number of places

Places in which the number is 2

)
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=

(
n− 1− k

k

)
There can be a minimum of 0 twos (and all ones) in the composition to a maximum of all twos if
n− 1 is even, or a one and n−2

2 twos if n− 1 is odd.

Summing the number of (1,2)-compositions for all k with limits k = 0 to ⌊n−1
2 ⌋ we get,

Number of (1,2)-compositions of n− 1 =

⌊n−1
2 ⌋∑

k=0

(
n− 1− k

k

)
Taking k = i− 1,

Number of (1,2)-compositions of n− 1 =

⌊n+1
2 ⌋∑

i=1

(
n− i

i− 1

)
which from Section 4.1, Pascal’s triangle in Binomial form = Fn

=⇒ Number of (1,2)-compositions of n− 1 = Fn

Proof. 2:
Let the number of ways n-1 can be written as a sum of ones and twos be Vn V1 = 1 V2 = 1 ...(1)
For n>2, Vn = number of ways in which n-1 can be written as a sum of ones and twos such that
the last (rightmost) number is 1
+ number of ways in which n-1 cam be written as sum of ones and twos such that the last number
is 2
If the last number is 1, the sum of all previous numbers=n-2
=⇒ number of ways to write n-1 as sum of ones and twos such that the last number is 1= number
of ways to write the numbers before the last number = Vn−1

If the last number is 2, the sum of all previous numbers is n-3
=⇒ number of ways to write n-1 as sum of ones and twos such that the last number is 2 = number
of ways to write the numbers before the last number =Vn−2

Hence, Vn = Vn−1 + Vn−2 ...(2)
So, from (1) and (2), Vn = Fn

6 Extension of Fibonacci recursion sequences into negative
numbers

We know that Fibonacci recursion is:

Fn+1 = Fn + Fn−1 ∀ n > 2

If we remove the constraint n > 2, we can extent G-sequences towards the left side (negative axis).

Fibonacci numbers, F0 is boxed:

. . . , 13, -8, 5, -3, 2, -1, 1, 0 , 1, 1, 2, 3, 5, 8, 13, . . .

The numbers on the left hand side are the same as those on the right, but the sign of the numbers
alternates.

Conjecture 6.1. F−n = (−1)n−1Fn

Lucas numbers, L0 is boxed:

. . . , -29, 18, -11, 7, -4, 3, -1, 2 , 1, 3, 4, 7, 11, 18, 29, . . .

Conjecture 6.2. L−n = (−1)nLn

Some terms of G sequence with starting x and y:

. . . , -3x+2y, 2x-y, −x+ y , x, y, x+y, . . .
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Boxed term will be point of "symmetry"

(assuming the sign will always alternate)
(If there is symmetry for first few terms, does it follow that the entire sequence will be symmetric?)

There will be symmetry across F0 when:
Case 1: Every other term is negative, starting with A−2:

x = 2x− y and y = −(−3x+ 2y)

=⇒x = y

Case 2: Every other term is negative, starting with A−1:

x = −(2x− y) and y = −3x+ 2y

=⇒y = 3x

Theorem 6.1. For all G sequences where x = y: A−n = (−1)n−1An

Proof.

A1 = A2

A0 = A2 −A1

=⇒A0 = 0

A1 = A0 +A−1

=⇒A−1 = A1 −A0.

=⇒A−1 = A1 (1)

Base case 1: A−1 = (−1)0A1=⇒A−1 = A1, which is true by (1)

By definition A−2 = A0 −A−1

=⇒A−2 = −A−1

=⇒A−2 = −A1

=⇒A−2 = −A2 (2)

Base case 2: A−2 = (−1)1A2=⇒A−2 = −A2, which is true by (2)
Induction step : Assume it is true for n = k and n = k − 1

A−(k+1) +A−k = A−(k−1)

A−(k+1) = A−(k−1) −A−k

= (−1)k−2Ak−1 − (−1)k−1Ak

= (−1)k(Ak−1 +Ak)

= (−1)kAk+1

Theorem 6.2. For all G sequences where y = 3x: A−n = (−1)nAn

Proof.

A2 = 3A1

A0 +A1 = A2

=⇒A0 = 2A1

A−1 +A0 = A1

=⇒A−1 = −A1 (3)

Base case 1: A−1 = (−1)1A1=⇒A−1 = −A1, which is true by (3)

A−2 = A0 −A−1
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=⇒A−2 = 2A1 − (−A1)

=⇒A−2 = 3A1

=⇒A−2 = A2 (4)

Base case 2: A−2 = (−1)2A2=⇒A−1 = A2, which is true by (4)
Induction step: Assume it is true for n = k and n = k − 1

A−(k+1) +A−k = A−(k−1)

A−(k+1) = A−(k−1) −A−k

= (−1)k−1Ak−1 − (−1)kAk

= (−1)k−1(Ak−1 +Ak)

= (−1)k+1Ak+1

7 Other Properties of Fibonacci Sequence
Consider the following table:

Fn Fn+1 gcd(Fn, Fn+1)

1 1 1

1 2 1

2 3 1

3 5 1

5 8 1

8 13 1

13 21 1

We observe that greatest common divisor of any two consecutive numbers in the Fibonacci sequence
is 1. Mathematically,

Lemma 7.1. gcd(Fn, Fn+1) = 1

Proof. Base Case n = 1: If n = 1, the left hand side is gcd(F1, F2) = gcd(1, 1) = 1 which is equal
to the right hand side. So, the lemma holds when n = 1.

Inductive hypothesis: Suppose the lemma holds for all values of n up to some k, k ≥ 1.

Inductive step: Let n = k + 1.
Then our left side is

gcd(Fk+1, Fk+2) = gcd(Fk+1, Fk+2 − Fk+1) from Euclid’s lemma
= gcd(Fk+1, Fk)

= 1 from induction hypothesis

which is our right side. So, the lemma holds for n = k + 1. By the principle of mathematical
induction, the lemma holds for all n ∈ N.

Corollary 1. Fn and Fn+2 are coprime

Proof. Let d be the gcd of (Fn, Fn+2).
We know that
Fn+2 = Fn + Fn+1

d|Fn+2=⇒d | Fn + Fn+1

But d|Fn because d is a factor of Fn

=⇒ d|Fn+1

d is a factor of both Fn and Fn+1

d=1 from theorem 7.1
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Theorem 7.2. Fn = Fk × Fn−k+1 + Fk−1 × Fn−k , where k ∈ [2, n− 1]

Proof. Base Case k = 2: If k = 2, the right hand side is F2 ×Fn−1 +F1 ×Fn−2 = 1×Fn−1 +1×
Fn−2 = Fn−1 + Fn−2 = Fn which is equal to the left hand side. So, the theorem holds when
k = 2.

Inductive hypothesis: Suppose the theorem holds for all values of k up to some m, m ∈ [2, n− 1].

Inductive step: Let k = m+ 1. Then our right side is

Fm × Fn−m−1 + Fn−m × Fm+1 = Fm(Fn−m + Fn−m−1) + Fn−m(Fm+1 − Fm)

= Fm × Fn−m+1 + Fm−1 × Fn−m

= Fn

which is our left side. So, the theorem holds for k = m+1. By the principle of mathematical
induction, the theorem holds for all k ∈ [2, n− 1]

Corollary 2. Fa+b = Fa × Fb−1 + Fa+1 × Fb

We get this corollary by taking n=a+b and k=a

Corollary 3. F2n = Fn(Fn−1 + Fn+1)

We get this by taking a=n and b=n in the equation in corollary 2

Corollary 4. F2n+1 = Fn
2 + (Fn+1)

2

We get this by taking a=n and b=n+1 in corollary 2

Theorem 7.3. Fn+mk ≡ (Fk−1)
m × Fn mod (Fk)

Proof. Base Case m = 1: If m = 1, we know that Fn+k ≡ Fk−1 × Fm mod (Fk) from theorem
7.2. (Putting a=n and b=k in corollary 2) So, the theorem holds when m = 1.

Inductive hypothesis: Suppose the theorem holds for all values of m up to some a that is when
m ≤ a.

Inductive step: Let m = a+ 1. Then our left side is

Fn+ak+k ≡ Fk−1 × (Fn+ak)fromputtinga = n+ akandb = kincorollary2totheorem7.2

≡ Fk−1 × ((Fk−1)
a × Fn)

= (Fk−1)
a+1 × Fn mod (Fk).

which is our right side. So, the theorem holds for m = a+1. By the principle of mathematical
induction, the theorem holds for all m ∈ N.

Theorem 7.4. Fm|Fn⇐⇒m|n

Proof. Let m|n=⇒n = km, k ∈ N From theorem 7.3,

Fm+(k−1)m ≡ Fk−2
m × Fm mod (Fm)

=⇒Fm | Fn

We have proved the if part. Now,
Suppose m ≤ n and let m ∤ n.

=⇒n = km+ r ,such that k, r > 0 and r < m

=⇒Fn ≡ Fm−1
k × Fr mod Fm

=⇒Fm | Fn⇐⇒Fm | (Fm−1)
k × Fr

From lemma 6.1, gcd(Fm−1, Fm) = 1.

=⇒0 < Fr < Fm

=⇒Fm ∤ Fm−1
k × Fr

=⇒Fm ∤ Fn

Therefore, we have proven the only if by contraposition.
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Theorem 7.5. gcd(Fm, Fn) = Fgcd(m,n)

Proof. We prove this by induction on m+n
Base Case: When m+n=2
gcd(F1, F1) = Fgcd(1,1) = F1

Strong Inductive hypothesis: Suppose the theorem holds ∀ sums < m+ n
Induction step: Wlog, n > m

gcd(Fm, Fn) = gcd(Fm, F(n−m)+m)

From Corollary 2 in Theorem 7.2,
F(n−m)+m = Fn−m × Fm−1 + Fn−m+1 × Fm

gcd(Fm, Fn) = gcd(Fm, Fn−m × Fm−1 + Fn−m+1 × Fm)

= gcd(Fm, Fn−m × Fm−1) [By Euclid’s Lemma]
= gcd(Fm, Fn−m) [ This is because gcd(Fm, Fm−1) = 1 from lemma 7.1 ]
Now observe that m+ (n−m) = n < m+ n

So we can use our induction hypothesis to get
gcd(Fm, Fn−m) = Fgcd(m,n−m)

We know gcd(m,n−m) = gcd(m,n)

Hence, gcd(Fm, Fn−m) = gcd(Fm, Fn) = Fgcd(m,n)

By the Principle of Mathematical Induction, the theorem holds ∀ sum of m+ n and hence ∀m,n

Theorem 7.6. Fn−1Fn+1 − Fn
2 = (−1)n

Proof. Base Case n = 2: If n = 2, the left hand side is F2−1F2+1−F2
2 = F1F3−F2

2 = 1(2)−1 =
2− 1 = 1 and the right hand side is (−1)2 = 1 So, the theorem holds when n = 2.

Inductive hypothesis: Suppose the theorem holds for all values of n up to some k, k ≥ 2.

Inductive step: Let n = k + 1.

Fk
2 − Fk+1Fk−1 = Fk

2 − (Fk+1 − Fk)Fk+1

= Fk
2 + FkFk+1 − Fk+1

2

= Fk(Fk + Fk+1)− Fk+1
2

= FkFk+2 − Fk+1
2

From the inductive hypothesis, Fk−1Fk+1 − Fk
2 = (−1)k

=⇒Fk
2 − Fk−1Fk+1 = (−1)k+1

=⇒FkFk+2 − Fk+1
2 = (−1)k+1

which is our right side. So, the theorem holds for n = k + 1. By the principle of mathematical
induction, the theorem holds for all n ≥ 2.

Corollary 5. Fn−1
2 + FnFn−1 − Fn

2 = (−1)n

Proof. We prove for 3 ≤ n
We know Fk+1Fk−1 − F 2

k = (−1)k : proved in theorem 7.5

For k = n− 1:

(Fn−2)Fn − F 2
n−1 = (−1)n−1

=⇒Fn(Fn − Fn−1)− F 2
n−1 = (−1)n−1

=⇒F 2
n − FnFn−1 − F 2

n−1 = (−1)n−1

=⇒−F 2
n + FnFn−1 + F 2

n−1 = (−1)n

=⇒F 2
n−1 + FnFn−1 − F 2

n = (−1)n

It is easy to check that the identity also works for n=2
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Theorem 7.7. Fn
2 − Fn−kFn+k = Fk

2(−1)n−k

Proof. Please do not read this in a monochromatic PDF reader as this is a colored proof.

F 2
n − Fn−kFn+k = (Fn−kFk+1 + Fn−k−1Fk)

2 − Fn−k(Fn−kF2k+1 + Fn−k−1F2k)

= (Fn−kFk+1 + Fn−k−1Fk)
2 − Fn−k(Fn−kF2k+1 + Fn−k−1F2k)

= (Fn−kFk+1 + Fn−k−1Fk)
2 − Fn−k(Fn−k[F

2
k + F 2

k+1] + Fn−k−1[FkFk−1 + FkFk+1])

= F 2
n−kF

2
k+1 + F 2

n−k−1F
2
k + 2Fn−kFk+1Fn−k−1Fk−F 2

n−kF
2
k − F 2

n−kF
2
k+1

−Fn−kFn−k−1FkFk−1 − Fn−kFn−k−1FkFk+1

= F 2
n−kF

2
k+1 + F 2

n−k−1F
2
k + 2Fn−kFk+1Fn−k−1Fk−F 2

n−kF
2
k − F 2

n−kF
2
k+1

−Fn−kFn−k−1FkFk−1 − Fn−kFn−k−1FkFk+1

= F 2
n−k−1F

2
k + (Fn−kFn−k−1FkFk+1 − Fn−kFn−k−1FkFk−1)− F 2

n−kF
2
k

= F 2
n−k−1F

2
k + Fn−kFn−k−1Fk(Fk+1 − Fk−1)− F 2

n−kF
2
k

= F 2
n−k−1F

2
k + Fn−kFn−k−1F

2
k − F 2

n−kF
2
k

= F 2
k (F

2
n−k−1 − F 2

n−k + Fn−kFn−k−1)

= F 2
k (−1)n+k

We get this from corollary 2 by putting a=k and b=n-k
We get this from corollary 2 by putting a=2k and b=n-2k
We get this from corollary 4
We get this from corollary 5
We get this from expanding
We get this from expanding
We get this from corollary 5

8 Fibonacci Sequence Modulus m
Under this section, we talk about the some properties of the Fibonacci Sequence under a modulus.
Let us first define some terms that will be frequently used in this section.

Definition 8.1. F (mod m) means the sequence of the least non-negative residues of the terms
of the Fibonacci sequence taken modulo m.

For example: F (mod 3) = 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, . . .

Definition 8.2. Let Z(m) denote the position of the first zero in the sequence F (mod m). Then,
Z(m) is the least positive integer k such that Fk ≡ 0.

For example, Z(3) = 4

Definition 8.3. Let τ(m) denote the period of F (mod m). Then, τ(m) is the least positive
integer k such that Fk ≡ 0 and Fk+1 ≡ 1 (mod m).

For example,τ(m)8 We developed the following JAVA program to compute τ(m) and z(m).
Refer to Appendix 1 for the source code.
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With the help of the program, we calculated τ(m) and Z(m) which are listed below in the form of
the table for 2 ≤ m ≤ 15.

m Period of F (mod m), τ(m) First zero in F (mod m), Z(m)

2 3 3

3 8 4

4 6 6

5 20 5

6 24 12

7 16 8

8 12 6

9 24 12

10 60 15

11 10 10

12 24 12

13 28 7

14 48 24

15 40 20

From the above table we observe many interesting results which are stated as the theorems below.
We also find few interesting patterns that can be stated as conjectures.

Observation 8.1. F (mod m) is periodic.

It will be intriguing to note that this lemma can be generalised for the G-sequence as well.

Theorem 8.1. G(mod m) is periodic.

Proof. In mod m, there are m different numbers possible in the G(mod m), so the number of
different x and y starting pairs we can have is m2.

Assume that G(mod m) is not periodic. This means that any pair that appears in G(mod m)
will appear only once which will lead to infinitely many unique pairs of terms. But there are only
m2 different pairs possible. (⇒ ⇐)

=⇒ At least one pair will be repeated.
Assume some a,b repeat, that is, Ak ≡ a,Ak+1 ≡ b and An ≡ a,An+1 ≡ b for some k<m2 and
k<n
We want to prove An−k+1 ≡ xAn−k+2 ≡ y by induction.
We prove An−i+1 ≡ Ak−i+1 by induction.
Base case: It is true for i = 1 and i = 2
Inductive hypothesis: Assume it is true for i=m and i=m+1
Inductive step: An+1−[m+2] = An+1−m −An+1−m−1 ≡ Ak+1−m −Ak+1−m−1 = Ak−i−m+1

Theorem 8.2. There will never be a period of 2 mod n

Proof. Say we start the recursion with any two numbers x and y:

x, y, x+ y, x+ 2y, ....

To prove that this recursion (mod n) will never repeat with a period 2, we can show that if term(1)
and term(3) are congruent to each other mod n then term(2) and term(4) will not be congruent
to each other mod n.

Lemma 8.3. if x ≡ x+y mod n then y ̸≡ x+2y mod n, where x and y are not both equal to 0.
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Proof.

x ≡ x+ y mod n

=⇒y ≡ 0 mod n

assume :

y ≡ x+ 2y mod n

=⇒x ≡ 0 mod n

But x and y cannot both be equal to 0 (⇒ ⇐)

8.1 Fibonacci sequence mod n
Lemma 8.4. m = τ(n)k + r=⇒Fm ≡ Fr mod n if r ̸= 0 and Fm ≡ 0 mod n if r = 0

Theorem 8.5. m,n are coprime =⇒τ(mn) = LCM of τ(m) and τ(n)

Proof.

Fτ(mn) ≡ 0 mod mn and Fτ(mn)+1 ≡ 1 mod mn
=⇒ Fτ(mn) ≡ 0 mod mn and Fτ(mn)+1 ≡ 1 mod mn

Also, Fτ(mn) ≡ 0 mod n Fτ(mn)+1 ≡ 1 mod n
=⇒ τ(m)|τ(mn) and τ(n)|τ(mn)

∵ of the way τ(mn) is defined, it is the least positive integer such that it is divisible by both
τ(m) and τ(n)

Lemma 8.6. For some fixed value of k, Fa ≡ FZ(n)−1
kFr mod n is true for r = 1 and r = 2=⇒

it is true ∀0 < r < Z(n)

Proof. We prove this by induction.
Base case: It is true for r=1 and r=2
Induction step: Assume it is true for r=m and r=m-1

FZ(n)k+m−1 ≡ F k
Z(n)−1Fm−1 mod n

FZ(n)k+m ≡ F k
Z(n)−1Fm mod n

=⇒FZ(n)k+m−1 + FZ(n)k+m ≡ F k
Z(n)−1Fm−1 + FZ(n)−1Fm = F k

Z(n)−1[Fm−1 + Fm] mod n

=⇒FZ(n)k+m+1 ≡ F k
Z(n)−1 + Fm+1 mod n

Theorem 8.7. If a = k×Z(n)+r where r < Z(n) and r is non-negative. Then, Fa ≡ FZ(n)−1
kFr

mod n

Proof. We prove this by induction.
Base case: It is true for k=1 because FZ(n)+1 ≡ FZ(n)−1F1 mod n and FZ(n)+2 ≡ FZ(n)−1F2

mod n
Inductive hypothesis: Assume it is true for k = m
Induction step:

FZ(n)[m+1] = FZ(n)m+Z(n)−2 + FZ(n)m+Z(n)−1

=⇒ FZ(n)[m+1] ≡ Fm
Z(n)−1[FZ(n)−2 + FZ(n)−1]

≡ Fm
Z(n)−1[FZ(n)] mod n

=⇒ FZ(n)[m+1]+1 = FZ(n)[m+1] + FZ(n)m+Z(n)−1

≡ Fm
Z(n)−1[FZ(n)] + Fm

Z(n)−1[FZ(n)]

= Fm
Z(n)−1FZ(n)+1

≡ FZ(n)−1
m+1F1
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=⇒ FZ(n)[m+1]+2 = FZ(n)[m+1] + FZ(n)[m+1]+1

≡ Fm
Z(n)−1FZ(n) + Fm+1

Z(n)−1F1

= Fm
Z(n)−1[FZ(n) + FZ(n)−1F1]

≡ Fm+1
Z(n)−1F2 mod n

Corollary 6. m|Fn⇐⇒Z(m)|n

Theorem 8.8. n|Fk + (−1)k × Fτ(n)−k

Proof. We prove this by induction
Base case: k = 1
We need to prove F1 ≡ Fτ(n)−1 mod n
This is true because Fτ(n)−1 = Fτ(n)+ − Fτ(n)

k = 2 Fτ(n) − Fτ(n)−1 ≡ 1 mod n =⇒Fτ(n)−2 ≡ F2 mod n

Inductive hypothesis:
Assume the statement is TRUE for k = m− 1 and k = m
Fm+1 = Fm−1 + Fm ≡ −1[(−1)m−1Fτ(n)−m+1 + (−1)mFτ(n)−m = −1m[Fτ(n)−m+1 − Fτ(n)−m] =
−1m[Fτ(n)−m−1]
=⇒ the statement is true for k = m+ 1

Theorem 8.9. τ(m)
Z(m) = k where k is the least positive number that satisfies FZ(m)−1

k ≡ 1 mod n

Proof.

m | Fτ(m)=⇒Z(m) | τ(m)

Let τ(m) = k × Z(n)

Fτ(m)+1 = Fk×Z(m)+1 ≡ 1 mod m

From theorem 8.9 , Fτ(m)+1 ≡ FZ(m)−1
k × F1 mod m

FZ(m)1
k ≡ 1 is the smallest number such thatFτ(m) ≡ 0 mod m and Fτ(m)+1, k has to be

the smallest natural number such that the previous statement holds true

Theorem 8.10. τ(m)
Z(m) | 4

Proof.

FZ(m)−1 = FZ(m)+1 − FZ(m)

=⇒ FZ(m)−1 ≡ FZ(m)+1 mod m

From theorem 7.5,

FZ(m)−1FZ(m)+1 − FZ(m) = (−1)Z(m)

F 2
Z(m)−1 ≡ (−1)Z(m)

=⇒ F 4
Z(m)−1 ≡ 1 mod m

Note : Z(m) is even =⇒ τ(m)
Z(m) is 1 or 2 and Z(m) is odd =⇒ τ(m)

Z(m) is 4

Theorem 8.11. ∀m ≥ 3, τ(m) is even

Proof. Assume τ(m) is even and τ(m) ≥ 6.
From the theorem 8.9,

τ(m)

2
= τ(m)− τ(m)

2
cannot be even

=⇒ τ(m)

2
is odd.
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=⇒ τ(m)

2
− 1 is even and

τ(m)

2
− 2 is odd.

=⇒ F τ(m)
2 −1

≡ −F τ(m)
2 +1

(mod p) and F τ(m)
2 −2

≡ F τ(m)
2 +2

(mod m)

=⇒F τ(m)
2 −1

+ F τ(m)
2 −2

≡ −F τ(m)
2 +1

+ F τ(m)
2 +2

(mod m)

But F τ(m)
2 −1

+ F τ(m)
2 −2

= F τ(m)
2

= F τ(m)
2 +1

+ F τ(m)
2 +2

=⇒F τ(m)
2

= F τ(m)
2 +1

+ F τ(m)
2 +2

≡ −F τ(m)
2 +1

+ F τ(m)
2 +2

(mod m)

=⇒ m|2× F τ(m)
2 +1

(⇒⇐)

τ(m) cannot be 2 because no numbers greater than 2 divide F2.
τ(m) cannot be 4 because the only number greater than 2 that divides F4 is 3 and τ(3) ̸= 4.

Conjecture 8.1. If p is a prime, then τ(pn) = τ(p)× pn−1

9 Linear Transformations
We get a new type of sequence by further generalizing the recursion as follows,

Xn = aXn−2 + bXn−1

That is, each term in the sequence (after the second one) is the weighted sum of the preceding two
terms. With weights a and b and the starting terms as x and y.
The first few terms of this sequence can be represented as

x, y, ax+ by, abx+ (a+ b2)y, (a2 + ab2)x+ (2ab+ b3)y, ...

9.1 Matrix representation of Fibonacci Numbers
Looking at the Fibonacci sequence, we realize that a column matrix of a pair of consecutive
Fibonacci Numbers can be represented as the linear transformation of the previous pair of the
column matrix. Mathematically,

Lemma 9.1.  Fn

Fn−1

 =

1 1

1 0

Fn−1

Fn−2

 . . . (1)

Proof. The right hand side is1 1

1 0

Fn−1

Fn−2

 =

1 ∗ Fn−1 + 1 ∗ Fn−2

1 ∗ Fn−1 + 0 ∗ Fn−2


=

 Fn

Fn−1


which is equal to our left hand side.

Theorem 9.2.

 Fn

Fn−1

 =

1 1

1 0

n−2 F2

F1



Proof. Base Case n = 2: If n = 2, the left hand side is

F2

F1

 and the right hand side is

1 1

1 0

0 F2

F1

 =

F2

F1

 So, the theorem holds when n = 2.

Inductive hypothesis: Suppose the theorem holds for some n = k, k ≥ 2.
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Inductive step: Let n = k + 1.
Then our left hand side isFk+1

Fk

 =

1 1

1 0

 Fk

Fk−1

 =

1 1

1 0

1 1

1 0

k−2 F2

F1

 =

1 1

1 0

k−1 F2

F1


which is our right side. So, the theorem holds for n = k + 1. By the principle of mathematical

induction, the theorem holds for all n ∈ N.

We observe that we can generalize the above theorem for the any Xn.

9.2 Matrix representation of a General Recursion
By extending Lemma 1 for Xn = aXn−2 + bXn−1, we get,

Lemma 9.3.  Xn

Xn−1

 =

b a

1 0

Xn−1

Xn−2

 . . . (2)

Proof. The right hand side isb a

1 0

Xn−1

Xn−2

 =

b ∗Xn−1 + a ∗Xn−2

1 ∗Xn−1 + 0 ∗Xn−2


=

 Xn

Xn−1


which is equal to our left hand side.

Theorem 9.4.

 Xn

Xn−1

 =

b a

1 0

n−2 X2

X1



Proof. Base Case n = 2: If n = 2, the left hand side is

X2

X1

 and the right hand side is

b a

1 0

0 X2

X1

 =

X2

X1

 So, the theorem holds when n = 2.

Inductive hypothesis: Suppose the theorem holds for some n = k, k ≥ 2.

Inductive step: Let n = k + 1.
Then our left hand side isXk+1

Xk

 =

b a

1 0

 Xk

Xk−1

 =

b a

1 0

b a

1 0

k−2 X2

X1

 =

b a

1 0

k−2 X2

X1


which is our right side. So, the theorem holds for n = k + 1. By the principle of mathematical

induction, the theorem holds for all n ∈ N.

25



Appendix 1

Source Code for the Java Program

private void jButton1ActionPerformed ( java . awt . event . ActionEvent evt ) {
// To c a l c u l a t e f i r s t n Fibonacci Numbers
int n = In t eg e r . pa r s e In t ( t f 1 . getText ( ) ) ;
int t1 = 1 , t2 = 1 ;
System . out . p r i n t l n ( " F i r s t ␣" + n + "␣ terms : ␣" ) ;

for ( int i = 1 ; i <= n ; ++i ) {
System . out . p r i n t ( t1 + "␣␣" ) ;
int sum = t1 + t2 ;
t1 = t2 ;

t2 = sum ;
}

}

private void jButton2ActionPerformed ( java . awt . event . ActionEvent evt ) {
// To c a l c u l a t e Z(m)
int p = In t eg e r . pa r s e In t ( t f 2 . getText ( ) ) ;
int p1 = 1 , p2 = 1 , num = 2 , f = 1 ;

while ( f > 0)
{
f = (p1 + p2 ) % p ;

p1 = p2 ;
p2 = f ;
num++;

}
ta1 . append ( " F i r s t ␣0␣ f o r ␣mod␣" + p + "␣=␣" + num + ’ \n ’ ) ;

}

private void jButton6ActionPerformed ( java . awt . event . ActionEvent evt ) {
// To d i s p l a y the l i s t o f Z(m)
int x = In t eg e r . pa r s e In t ( t f 2 . getText ( ) ) ;
int n = In t eg e r . pa r s e In t ( t f 3 . getText ( ) ) ;

for ( int y=n ; y>=x ; x++){
int p1 = 1 , p2 = 1 , num = 2 , f = 1 ;

while ( f > 0){
f = (p1 + p2 ) % x ;
p1 = p2 ;
p2 = f ;
num++;

}
System . out . p r i n t ( " F i r s t ␣0␣ f o r ␣mod␣" + x + "␣=␣" + num + ’ \n ’ ) ; }

}

private void jButton3ActionPerformed ( java . awt . event . ActionEvent evt ) {
// To c a l c u l a t e the per iod F(mod m)
int m = Int eg e r . pa r s e In t ( t f 2 . getText ( ) ) ;
int a = 1 , b = 1 , c = 0 ;

int k = 2 ;
c = ( a+b)%m;

while (b != 0){
a = b ;
b = c ;
c = ( a+b)%m;
k++;
}
i f ( k%2 == 1){k = k∗4 ;}
else {

26



i f ( c !=1){k = k∗2 ;}
}
i f (m == 2){k = 3 ;}
ta2 . append ( " per iod ␣ f o r ␣mod" + m + "␣=␣" + k + ’ \n ’ ) ;

}

private void jButton4ActionPerformed ( java . awt . event . ActionEvent evt ) {
//To d i s p l a y the l i s t o f per iod F(mod m)
int m = Int eg e r . pa r s e In t ( t f 2 . getText ( ) ) ;
int n = In t eg e r . pa r s e In t ( t f 3 . getText ( ) ) ;

for ( int y=n ; y>=m;m++){
int a = 1 , b = 1 , c = 0 ;

int k = 2 ;
c = ( a+b)%m;

while (b != 0){
a = b ;
b = c ;
c = ( a+b)%m;
k++;
}
i f ( k%2 == 1){k = k∗4 ;}
else {

i f ( c !=1){k = k∗2 ;}
}
i f (m == 2){k = 3 ;}

System . out . p r i n t ( " per iod ␣ f o r ␣mod" + m + "␣=␣" + k + ’ \n ’ ) ; }
}
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